Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Orthop Surg Res ; 19(1): 296, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750513

RESUMO

BACKGROUND: Osteoporosis is one of the risk factors for screw loosening after lumbar fusion. However, the probability of preoperative osteoporosis screening in patients with lumbar degenerative disease is low. Therefore, the aim of this study was to investigate whether a simplified vertebral bone quality (VBQ) score based on T12 T1-MRI could opportunistically predict osteoporosis in patients with degenerative lumbar spine diseases. METHODS: We retrospectively analyzed cases treated for lumbar degenerative diseases at a single institution between August 2021 and June 2022. The patients were divided into three groups by the lowest T-score: osteoporosis group, osteopenia group, and normal bone mineral density (BMD) group. The signal intensity based on the T12 vertebral body divided by the signal intensity of the cerebrospinal fluid was calculated to obtain the simplified VBQ score, as well as the CT-based T12HU value and the traditional L1-4VBQ score. Various statistical analyses were used to compare VBQ, HU and DEXA, and the optimal T12VBQ threshold for predicting osteoporosis was obtained by plotting the receiver operating curve (ROC) analysis. RESULTS: Total of 166 patients were included in this study. There was a statistically significant difference in T12VBQ scores between the three groups (p < 0.001). Pearson correlation showed that there was a moderate correlation between T12VBQ and T-score (r=-0.406, p < 0.001). The AUC value of T12VBQ, which distinguishes between normal and low BMD, was 0.756, and the optimal diagnostic threshold was 2.94. The AUC value of T12VBQ, which distinguishes osteoporosis from non-osteoporosis, was 0.634, and the optimal diagnostic threshold was 3.18. CONCLUSION: T12VBQ can be used as an effective opportunistic screening method for osteoporosis in patients with lumbar degenerative diseases. It can be used as a supplement to the evaluation of DEXA and preoperative evaluation. TRIAL REGISTRATION: retrospectively registered number:1502-009-644; retrospectively registered number date:27 oct 2022.


Assuntos
Densidade Óssea , Vértebras Lombares , Osteoporose , Humanos , Osteoporose/diagnóstico por imagem , Feminino , Masculino , Vértebras Lombares/diagnóstico por imagem , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Imageamento por Ressonância Magnética/métodos , Valor Preditivo dos Testes , Vértebras Torácicas/diagnóstico por imagem , Degeneração do Disco Intervertebral/diagnóstico por imagem , Absorciometria de Fóton , Doenças Ósseas Metabólicas/diagnóstico por imagem , Doenças Ósseas Metabólicas/etiologia , Adulto
2.
Phytomedicine ; 127: 155480, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484462

RESUMO

BACKGROUND: Intervertebral disc degeneration (IVDD) is an essential cause of low back pain (LBP), the incidence of which has risen in recent years and is progressively younger, but treatment options are limited, placing a serious economic burden on society. Sanbi decoction (SBD) is an important classical formula for the treatment of IVDD, which can significantly improve patients' symptoms and is a promising alternative therapy. PURPOSE: The aim of this study is to investigate the safety and efficacy of SBD in the treatment of IVDD and to explore the underlying mechanisms by using an integrated analytical approach of microbiomics and serum metabolomics, as well as by using molecular biology. METHODS: A rat IVDD puncture model was established and treated by gavage with different concentrations of SBD, and clean faeces, serum, liver, kidney, and intervertebral disc (IVD) were collected after 4 weeks. We assessed the safety by liver and kidney weighing, functional tests and tissue staining, the expression of tumor necrosis factor-alpha (TNF-ɑ), interleukin 1ß (IL-1ß) and interleukin 6 (IL-6) inflammatory factors in serum was detected by ELISA kits, and X-ray test, magnetic resonance imaging (MRI) examination, immunohistochemistry (IHC), western blotting (WB), hematoxylin-eosin (HE) staining and safranin O-fast green (SO/FG) staining were used to assess the efficacy. Finally, we performed 16S rRNA sequencing analysis on the faeces of different groups and untargeted metabolomics on serum and analyzed the association between them. RESULTS: SBD can effectively reduce the inflammatory response, regulate the metabolic balance of extracellular matrix (ECM), improve symptoms, and restore IVD function. In addition, SBD can significantly improve the diversity of intestinal flora and maintain the balance. At the phylum level, SBD greatly increased the relative abundance of Patescibacteria and Actinobacteriota and decreased the relative abundance of Bacteroidota. At the genus level, SBD significantly increased the relative abundance of Clostridia_UCG-014, Enterorhabdus, and Adlercreutzia, and decreased the relative abundance of Ruminococcaceae_UCG-005 (p < 0.05). Untargeted metabolomics indicated that SBD significantly improved serum metabolites and altered serum expression of 4alpha-phorbol 12,13-didecanoate (4alphaPDD), euscaphic acid (EA), alpha-muricholic acid (α-MCA), 5-hydroxyindoleacetic acid (5-HIAA), and kynurenine (Kyn) (p < 0.05), and the metabolic pathways were mainly lipid metabolism and amino acid metabolism. CONCLUSIONS: This study demonstrated that SBD can extensively regulate intestinal flora and serum metabolic homeostasis to reduce inflammatory response, inhibit the degradation of ECM, restore IVD height and water content to achieve apparent therapeutic effect for IVDD.


Assuntos
Microbioma Gastrointestinal , Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Ratos , Animais , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , RNA Ribossômico 16S , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Homeostase
3.
Int J Surg ; 109(3): 352-363, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912508

RESUMO

BACKGROUND: Adjacent vertebral fracture (AVF) is a frequently observed complication after percutaneous vertebroplasty (PVP) in patients with osteoporotic vertebral compressive fracture. Biomechanical deterioration initially induces a higher risk of AVF. Studies demonstrated that the aggravation of regional differences in the elastic modulus of different components might deteriorate the local biomechanical environment and increase the risk of structural failure. Considering the existence of intravertebral regional differences in bone mineral density (BMD) (i.e. elastic modulus), it was hypothesized in the present study that higher intravertebral BMD differences may induce a higher risk of AVF biomechanically. MATERIALS AND METHODS: The radiographic and demographic data of osteoporotic vertebral compressive fracture patients treated using PVP were reviewed in the present study. The patients were divided into two groups: those with AVF and those without AVF. The Hounsfield unit (HU) values of transverse planes from the superior to the inferior bony endplate were measured, and the differences between the highest and lowest HU values of these planes were considered the regional differences of the HU value. The data from patients with and without AVF were compared, and the independent risk factors were identified through regression analysis. PVP with different grades of regional differences in the elastic modulus of the adjacent vertebral body was simulated using a previously constructed and validated lumbar finite element model, and the biomechanical indicators related to AVF were computed and recorded in surgical models. RESULTS: Clinical data on 103 patients were collected in this study (with an average follow-up period of 24.1 months). The radiographic review revealed that AVF patients present a significantly higher regional difference in the HU value and that the increase in the regional difference of the HU value was an independent risk factor for AVF. In addition, numerical mechanical simulations recorded a stress concentration tendency (the higher maximum equivalent stress value) in the adjacent vertebral cancellous bone, with a stepwise aggravation of the adjacent cancellous bony regional stiffness differences. CONCLUSIONS: The aggravation of regional BMD differences induces a higher risk of AVF after PVP surgery through a deterioration of the local biomechanical environment. The maximum differences in the HU value of the adjacent cancellous bone should, therefore, be measured routinely to better predict the risk of AVF. Patients with noticeable regional BMD differences should be considered at high risk for AVF, and greater attention must be paid to these patients to reduce the risk of AVF. EVIDENCE GRADE: Level III b.


Assuntos
Fraturas por Compressão , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Vertebroplastia , Humanos , Fraturas da Coluna Vertebral/cirurgia , Densidade Óssea , Vertebroplastia/efeitos adversos , Estudos Retrospectivos , Fraturas por Osteoporose/cirurgia , Fraturas por Compressão/cirurgia , Cimentos Ósseos/uso terapêutico
4.
Dis Markers ; 2022: 9515571, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35578687

RESUMO

Background: Inflammatory reactions and pyroptosis play an important role in the pathology of intervertebral disc degeneration (IDD). The aim of the present study was to investigate pyroptosis in the nucleus pulposus cells (NPCs) of inflammatory induced IDD by bioinformatic methods and to search for possible diagnostic biomarkers. Methods: Gene expression profiles related to IDD were downloaded from the GEO database to identify differentially expressed genes (DEGs) between inflammation-induced IDD and non-inflammatory intervention samples. Pyroptosis genes were then searched for, and their expression in IDD was analyzed. Weighted gene co-expression network analysis (WGCNA) was then used to search for modules of IDD genes associated with pyroptosis and intersected with DEGs to discover candidate genes that would be diagnostically valuable. A LASSO model was developed to screen for genes that met the requirements, and ROC curves were created to clarify the diagnostic value of the genetic markers. Ultimately, the screened genes were further validated, and their diagnostic value assessed by selecting gene sets from the GEO database. RT-PCR was used to assess the mRNA expression of diagnostic markers in the nucleus pulposus (NP). Pan-cancer analysis was applied to demonstrate the expression and prognostic value of the screened genes in various tumors. Results: A total of 733 DEGs were identified in GSE41883 and GSE27494, which were mainly enriched in transmembrane receptor protein serine/threonine, kinase signaling pathway, response to lipopolysaccharide, and other biological processes, and they were mainly related to TGF beta signaling pathway, toll-like receptor signaling pathway, and TNF signaling pathway. A total of 81 genes related to pyroptosis were identified in the literature, and eight genes related to IDD were identified in the Veen diagram, namely, IL1A, IL1B, NOD2, GBP1, IL6, AK1, EEF2K, and PYCARD. Eleven candidate genes were obtained after locating the intersection of pyroptosis-related module genes and DEGs according to WGCNA analysis. A total of six valid genes were obtained after constructing a machine learning model, and five key genes were finally identified after correlation analysis. GSE23132 and GSE56081 validated the candidate genes, and the final IDD-related diagnostic markers were obtained as SMIM1 and SEZ6L2. RT-PCR results indicated that the mRNA expression of both was significantly elevated in IDD. The pan-cancer analysis demonstrated that SMIM1 and SEZ6L2 have important roles in the expression and prognosis of various tumors. Conclusion: In conclusion, this research identifies SMIM1 and SEZ6L2 as important biomarkers of IDD associated with pyroptosis, which will help to unravel the development and pathogenesis of IDD and determine potential therapeutic targets.


Assuntos
Degeneração do Disco Intervertebral , Proteínas de Membrana , Núcleo Pulposo , Biomarcadores/metabolismo , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Proteínas de Membrana/metabolismo , Núcleo Pulposo/metabolismo , Piroptose/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA