RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Viral pneumonia is the leading cause of death after SARS-CoV-2 infection. Despite effective at early stage, long-term treatment with glucocorticoids can lead to a variety of adverse effects and limited benefits. The Chinese traditional herb Pogostemonis Herba is the aerial part of Pogostemon Cablin (Blanco) Benth., which has potent antiviral, antibacterial, anti-inflammatory, and anticancer effects. It was used widely for treating various throat and respiratory diseases, including COVID-19, viral infection, cough, allergic asthma, acute lung injury and lung cancer. AIM OF THE STUDY: To investigate the antiviral and anti-inflammatory effects of chemical compounds from Pogostemonis Herba in SARS-CoV-2-infected hACE2-overexpressing mouse macrophage RAW264.7 cells and hACE2 transgenic mice. MATERIALS AND METHODS: The hACE2-overexpressing RAW264.7 cells were exposed with SARS-CoV-2. The cell viability was detected by CCK8 assay and cell apoptotic rate was by flow cytometric assay. The expressions of macrophage M1 phenotype markers (TNF-α and IL-6) and M2 markers (IL-10 and Arg-1) as well as the viral loads were detected by qPCR. The mice were inoculated intranasally with SARS-CoV-2 omicron variant to induce viral pneumonia. The levels of macrophages, neutrophils, and T cells in the lung tissues of infected mice were analyzed by full spectrum flow cytometry. The expressions of key proteins were detected by Western blot assay. RESULTS: Diosmetin-7-O-ß-D-glucopyranoside (DG) presented the strongest anti-SARS-CoV-2 activity. Intervention with DG at the concentrations of 0.625-2.5 µM not only reduced the viral replication, cell apoptosis, and the productions of inflammatory cytokines (IL-6 and TNF-α) in SARS-CoV-2-infected RAW264.7 cells, but also reversed macrophage polarity from M1 to M2 phenotype. Furthermore, treatment with DG (25-100 mg/kg) alleviated acute lung injury, and reduced macrophage infiltration in SARS-COV-2-infected mice. Mechanistically, DG inhibited SARS-COV-2 gene expression and HK3 translation via targeting YTHDF1, resulting in the inactivation of glycolysis-mediated NF-κB pathway. CONCLUSIONS: DG exerted the potent antiviral and anti-inflammatory activities. It reduced pneumonia in SARS-COV-2-infected mice via inhibiting the viral replication and accelerating M2 macrophage polarization via targeting YTHDF1, indicating its potential for COVID-19 treatment.
Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Macrófagos , SARS-CoV-2 , Replicação Viral , Animais , Camundongos , Células RAW 264.7 , Replicação Viral/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/virologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Camundongos Transgênicos , Pogostemon/química , Citocinas/metabolismo , Apoptose/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/virologia , Pulmão/patologia , Glucosídeos/farmacologia , Glucosídeos/isolamento & purificação , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/uso terapêutico , Enzima de Conversão de Angiotensina 2/metabolismo , Anti-Inflamatórios/farmacologia , Masculino , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , HumanosRESUMO
Pituitary tumor is a common neuroendocrine tumor, but there are also rare clinical metastases at this site, which are generally transferred from extrabellar tumors. Although the clinical incidence is low, the prognosis is poor. The purpose of this editorial is to discuss further the relevant knowledge of pituitary metastases and remind clinicians to prevent missed diagnosis and improve the prognosis of these patients.
RESUMO
PURPOSE: Mucinous breast carcinoma (MBC) tends to be misdiagnosed as fibroadenomas (FA) due to its benign imaging characteristics. We aimed to develop a deep learning (DL) model to differentiate MBC and FA based on ultrasound (US) images. The model could contribute to the diagnosis of MBC for radiologists. METHODS: In this retrospective study, 884 eligible patients (700 FA patients and 184 MBC patients) with 2257 US images were enrolled. The images were randomly divided into a training set (n = 1805 images) and a test set (n = 452 images) in a ratio of 8:2. First, we used the training set to establish DL model, DL+ age-cutoff model and DL+ age-tree model. Then, we compared the diagnostic performance of three models to get the optimal model. Finally, we evaluated the diagnostic performance of radiologists (4 junior and 4 senior radiologists) with and without the assistance of the optimal model in the test set. RESULTS: The DL+ age-tree model yielded higher areas under the receiver operating characteristic curve (AUC) than DL model and DL+ age-cutoff model (0.945 vs. 0.835, P < .001; 0.945 vs. 0.931, P < .001, respectively). With the assistance of DL+ age-tree model, both junior and senior radiologists' AUC had significant improvement (0.746-0.818, P = .010, 0.827-0.860, P = .005, respectively). CONCLUSIONS: The DL+ age-tree model based on US images and age showed excellent performance in the differentiation of MBC and FA. Moreover, it can effectively improve the performance of radiologists with different degrees of experience that may contribute to reducing the misdiagnosis of MBC.
RESUMO
Osteosarcoma (OS) is a rare malignant tumor that has predominantly affected children and adolescents in the past 50 years. The genomes of OS tumors exhibit a high degree of complexity, which leads to the great challenge of target identification for anti-OS. To date, no efficient therapeutic target for the treatment of OS has been validated in clinical practice. In our previous drug hunting for the treatment of OS by phenotypic screening, we found that thiazolone derivate (R)-8i was an effective and selective inhibitor against OS in MNNG/HOS cells and in vivo. However, the mechanism of action and specific molecular targets of (R)-8i remain unclear. In this study, we design and synthesize the photo-cross-linking probes based on the lead compound (R)-8i and identify DDX5 as a potential target protein using an activity-based protein profiling strategy. Further experiments including Western blot, shRNA knockdown experiments, cell colony formation, wound healing assays, and cellular thermal shift assays support that (R)-8i binds to DDX5 and induces its degradation, which affect cell proliferation and migration through the PI3K-AKT-mTOR signaling pathway. The research shows that DDX5 is a potential therapeutic target for the treatment of OS.
Assuntos
Proliferação de Células , RNA Helicases DEAD-box , Osteossarcoma , Tiazóis , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Osteossarcoma/patologia , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Tiazóis/química , Tiazóis/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
Endophytic fungi can produce attractive secondary metabolites with various biological activities that have contributed significantly to pharmacotherapy. In this study, three bisabolane-type sesquiterpenoids, including a new one, namely, inonotic acid C (1), together with previously reported compounds (S)-(+)-11-dehydrosydonic acid (2) and sydonic acid (3), were isolated from a marine algal-derived endophytic fungus Penicillium oxalicum MZY-202312-521. Their structures were determined by means of extensive spectroscopic analyses. The absolute configurations of inonotic acid C (1) were established by single-crystal X-ray diffraction method. In vitro cytotoxic experiments on human A549, MCF-7, HeLa, and HepG2 carcinoma cell lines were carried out. The new compound inonotic acid C (1) was found to possess strong inhibitory activity against the MCF-7 cell line, with an IC50 value of 7.7 µM.
RESUMO
Paclitaxel (PTX) serves as a primary chemotherapy agent against diverse solid tumors including breast cancer, lung cancer, head and neck cancer and ovarian cancer, having severe adverse effects including PTX-induced peripheral neuropathy (PIPN) and hypersensitivity reactions (HSR). A recommended anti-allergic agent diphenhydramine (DIP) has been used to alleviate PTX-induced HSR. Desloratadine (DLT) is a third generation of histamine H1 receptor antagonist, but also acted as a selective antagonist of 5HTR2A. In this study we investigated whether DLT ameliorated PIPN-like symptoms in mice and the underlying mechanisms. PIPN was induced in male mice by injection of PTX (4 mg/kg, i.p.) every other day for 4 times. The mice exhibited 50% reduction in mechanical threshold, paw thermal response latency and paw cold response latency compared with control mice. PIPN mice were treated with DLT (10, 20 mg/kg, i.p.) 30 min before each PTX administration in the phase of establishing PIPN mice model and then administered daily for 4 weeks after the model was established. We showed that DLT administration dose-dependently elevated the mechanical, thermal and cold pain thresholds in PIPN mice, whereas administration of DIP (10 mg/kg, i.p.) had no ameliorative effects on PIPN-like symptoms. We found that the expression of 5HTR2A was selectively elevated in the activated spinal astrocytes of PIPN mice. Spinal cord-specific 5HTR2A knockdown by intrathecal injection of AAV9-5Htr2a-shRNA significantly alleviated the mechanical hyperalgesia, thermal and cold hypersensitivity in PIPN mice, while administration of DLT (20 mg/kg) did not further ameliorate PIPN-like symptoms. We demonstrated that DLT administration alleviated dorsal root ganglion neuronal damage and suppressed sciatic nerve destruction, spinal neuron apoptosis and neuroinflammation in the spinal cord of PIPN mice. Furthermore, we revealed that DLT administration suppressed astrocytic neuroinflammation via the 5HTR2A/c-Fos/NLRP3 pathway and blocked astrocyte-neuron crosstalk by targeting 5HTR2A. We conclude that spinal 5HTR2A inhibition holds promise as a therapeutic approach for PIPN and we emphasize the potential of DLT as a dual-functional agent in ameliorating PTX-induced both PIPN and HSR in chemotherapy. In summary, we determined that spinal 5HTR2A was selectively activated in PIPN mice and DLT could ameliorate the PTX-induced both PIPN- and HSR-like pathologies in mice. DLT alleviated the damages of DRG neurons and sciatic nerves, while restrained spinal neuronal apoptosis and CGRP release in PIPN mice. The underlying mechanisms were intensively investigated by assay against the PIPN mice with 5HTR2A-specific knockdown in the spinal cord by injection of adeno-associated virus 9 (AAV9)-5Htr2a-shRNA. DLT inhibited astrocytic NLRP3 inflammasome activation-mediated spinal neuronal damage through 5HTR2A/c-FOS pathway. Our findings have supported that spinal 5HTR2A inhibition shows promise as a therapeutic strategy for PIPN and highlighted the potential advantage of DLT as a dual-functional agent in preventing against PTX-induced both PIPN and HSR effects in anticancer chemotherapy.
Assuntos
Loratadina , Paclitaxel , Doenças do Sistema Nervoso Periférico , Animais , Masculino , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Camundongos , Paclitaxel/efeitos adversos , Loratadina/análogos & derivados , Loratadina/farmacologia , Loratadina/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacologia , Antagonistas não Sedativos dos Receptores H1 da Histamina/uso terapêutico , Hipersensibilidade a Drogas/tratamento farmacológico , Camundongos Endogâmicos C57BLRESUMO
Collagen, the predominant protein constituent of the mammalian extracellular matrix (ECM), comprises a diverse family of 28 members (I-XXVIII). Beyond its structural significance, collagen is implicated in various diseases or cancers, notably breast cancer, where it influences crucial cellular processes including proliferation, metastasis, apoptosis, and drug resistance, intricately shaping cancer progression and prognosis. In breast cancer, distinct collagens exhibit differential expression profiles, with some showing heightened or diminished levels in cancerous tissues or cells compared to normal counterparts, suggesting specific and pivotal biological functions. In this review, we meticulously analyze the expression of individual collagen members in breast cancer, utilizing Transcripts Per Million (TPM) data sourced from the GEPIA2 database. Through this analysis, we identify collagens that deviate from normal expression patterns in breast cancer, providing a comprehensive overview of their expression dynamics, functional roles, and underlying mechanisms. Our findings shed light on recent advancements in understanding the intricate interplay between these aberrantly expressed collagens and breast cancer. This exploration aims to offer valuable insights for the identification of potential biomarkers and therapeutic targets, thereby advancing the prospects of more effective interventions in breast cancer treatment.
RESUMO
BACKGROUND: The neuroendoscopic approach has the advantages of a clear operative field, convenient tumor removal, and less damage, and is the development direction of modern neurosurgery. At present, transnasal surgery for sphenoidal pituitary tumor is widely used. But it has been found in clinical practice that some patients with this type of surgery may experience post-operative nausea and vomiting and other discomforts. AIM: To explore the effect of reserved gastric tube application in the neuroendoscopic endonasal resection of pituitary tumors. METHODS: A total of 60 patients who underwent pituitary adenoma resection via the endoscopic endonasal approach were selected and randomly divided into the experimental and control groups, with 30 in each group. Experimental group: After anesthesia, a gastric tube was placed through the mouth under direct vision using a visual laryngoscope, and the fluid accumulated in the oropharynx was suctioned intermittently with low negative pressure throughout the whole process after nasal disinfection, during the operation, and when the patient recovered from anesthesia. Control group: Given the routine intraoperative care, no gastric tube was left. The number of cases of nausea/vomiting/aspiration within 24 h post-operation was counted and compared between the two groups; the scores of pharyngalgia after waking up, 6 h post-operation, and 24 h post-operation. The frequency of postoperative cerebrospinal fluid leakage and intracranial infection were compared. The hospitalization days of the two groups were statistically compared. RESULTS: The times of postoperative nausea and vomiting in the experimental group were lower than that in the control group, and the difference in the incidence of nausea was statistically significant (P < 0.05). After the patient woke up, the scores of sore throat 6 h after the operation and 24 h after operation were lower than those in the control group, and the difference was statistically significant (P < 0.05). The number of cases of postoperative cerebrospinal fluid leakage and intracranial infection was higher than that of the control group, but there was no statistically significant difference from the control group (P > 0.05). The hospitalization days of the experimental group was lower than that of the control group, and the difference was statistically significant (P < 0.05). CONCLUSION: Reserving a gastric tube in the endoscopic endonasal resection of pituitary tumors, combined with intraoperative and postoperative gastrointestinal decompression, can effectively reduce the incidence of nausea, reduce the number of vomiting and aspiration in patients, and reduce the complications of sore throat The incidence rate shortened the hospitalization days of the patients.
RESUMO
The study aimed to investigate the effect of ginsenoside Rg1 on intervertebral disc degeneration (IVDD) in rats and IL-1ß-induced nucleus pulposus (NP) cells, and explore its underlying mechanism. Forty IVDD rat models were divided into the IVDD group, low-dose (L-Rg1) group (intraperitoneal injection of 20 mg/kg/d ginsenoside Rg1), medium-dose (M-Rg1) group (intraperitoneal injection of 40 mg/kg/d ginsenoside Rg1), and high-dose (H-Rg1) group (intraperitoneal injection of 80 mg/kg/d ginsenoside Rg1). The pathological change was observed by HE and safranin O-fast green staining. The expression of IL-1ß, IL-6, TNF-α, MMP3, aggrecan, and collagen II was detected. The expression of NF-κB p65 in IVD tissues was detected. Rat NP cells were induced by IL-1ß to simulate IVDD environment and divided into the control group, IL-1ß group, and 20, 50, and 100 µmol/L Rg1 groups. The cell proliferation activity, the apoptosis, and the expression of IL-6, TNF-α, MMP3, aggrecan, collagen II, and NF-κB pathway-related protein were detected. In IVDD rats, ginsenoside Rg1 improved the pathology of IVD tissues; suppressed the expression of IL-1ß, IL-6, TNF-α, aggrecan, and collagen II; and inhibited the expression of p-p65/p65 and nuclear translocation of p65, to alleviate the IVDD progression. In the IL-1ß-induced NP cells, ginsenoside Rg1 also improved the cell proliferation and inhibited the apoptosis and the expression of IL-6, TNF-α, aggrecan, collagen II, p-p65/p65, and IκK in a dose-dependent manner. Ginsenoside Rg1 alleviated IVDD in rats and inhibited apoptosis, inflammatory response, and ECM degradation in IL-1ß-induced NP cells. And Rg1 may exert its effect via inhibiting the activation of NF-κB signaling pathway.
Assuntos
Ginsenosídeos , Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animais , Ratos , Agrecanas/genética , Apoptose , Colágeno/farmacologia , Inflamação/patologia , Interleucina-6/metabolismo , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Metaloproteinase 3 da Matriz/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismoRESUMO
OBJECTIVES: Pediatric patients undergoing cardiac surgery usually experience significant surgical pain. Additionally, the effect of poor surgical analgesia creates a pain continuum that extends to the postoperative period. Transversus thoracic muscle plane block (TTMPB) is a novel plane block technique that can provide analgesia to the anterior chest wall. The analgesic role of TTMPB in pediatric cardiac surgery is still uncertain. A meta-analysis was conducted to determine the analgesic efficacy of this procedure. DESIGN AND SETTING: Systematic review and meta-analysis. PubMed, Embase, Web of Science, CENTRAL, WanFang Data, and the China National Knowledge Infrastructure were searched to November 2023, and the Grading of Recommendations Assessment, Development, and Evaluation approach was followed to evaluate the certainty of evidence. PARTICIPANTS: Eligible studies enrolled pediatric patients from 2 months to 12 years old scheduled to undergo cardiac surgery, and randomized them to receive a TTMPB or no block/sham block. MEASUREMENTS AND MAIN RESULTS: Six studies that enrolled 601 pediatric patients were included. Low-certainty evidence from randomized trials showed that, compared with no block or sham block, TTMPB in pediatric patients undergoing cardiac surgery may reduce postoperative modified objective pain score at 12 hours (weighted mean difference [WMD] -2.20, 95% CI -2.73 to -1.68) and 24 hours (WMD -1.76, 95% CI -2.09 to -1.42), intraoperative opioid consumption (WMD -3.83, 95% CI -5.90 to -1.76 µg/kg), postoperative opioid consumption (WMD -2.51, 95% CI -2.84 to -2.18 µg/kg), length of intensive care unit (ICU) stay (WMD -5.56, 95% CI -8.30 to -2.83 hours), and extubation time (WMD -2.13, 95% CI -4.21 to -0.05 hours). Retrospective studies provided very low certainty that the results were consistent with the randomized trials. CONCLUSION: Very low- to low-certainty evidence showed that TTMPB in pediatric patients undergoing cardiac surgery may reduce postoperative pain, opioid consumption, ICU length of stay, and extubation time.
Assuntos
Procedimentos Cirúrgicos Cardíacos , Bloqueio Nervoso , Estudos Observacionais como Assunto , Dor Pós-Operatória , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Dor Pós-Operatória/prevenção & controle , Dor Pós-Operatória/etiologia , Procedimentos Cirúrgicos Cardíacos/métodos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Bloqueio Nervoso/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Estudos Observacionais como Assunto/métodos , CriançaRESUMO
Colorectal cancer (CRC) is a common malignancy affecting the gastrointestinal tract worldwide. The etiology and progression of CRC are related to factors such as environmental influences, dietary structure, and genetic susceptibility. Intestinal microbiota can influence the integrity of the intestinal mucosal barrier and modulate intestinal immunity by secreting various metabolites. Dysbiosis of the intestinal microbiota can affect the metabolites of the microbial, leading to the accumulation of toxic metabolites, which can trigger chronic inflammation or DNA damage and ultimately lead to cellular carcinogenesis and the development of CRC. Postbiotics are preparations of inanimate microorganisms or their components that are beneficial to the health of the host, with the main components including bacterial components (e.g., exopolysaccharides, teichoic acids, surface layer protein) and metabolites (e.g., short-chain fatty acids, tryptophan metabolite, bile acids, vitamins and enzymes). Compared with traditional probiotics, it has a more stable chemical structure and higher safety. In recent years, it has been demonstrated that postbiotics are involved in regulating intestinal microecology and improving the progression of CRC, which provides new ideas for the prevention and diagnosis of CRC. In this article, we review the changes in intestinal microbiota in different states of the gut and the mechanisms of anti-tumor activity of postbiotic-related components, and discuss the potential significance of postbiotics in the diagnosis and treatment of CRC. This reviews the changes and pathogenesis of intestinal microbiota in the development of CRC, and summarizes the relevant mechanisms of postbiotics in resisting the development of CRC in recent years, as well as the advantages and limitations of postbiotics in the treatment process of CRC.
RESUMO
The utilization of black beans as a protein-rich ingredient presents remarkable prospects in the protein food industry. The objective of this study was to assess the impact of germination treatment on the physicochemical, structural, and functional characteristics of a black bean protein isolate. The findings indicate that germination resulted in an increase in both the total and soluble protein contents of black beans, while SDS-PAGE demonstrated an increase in the proportion of 11S and 7S globulin subunits. After germination, the particle size of the black bean protein isolate decreased in the solution, while the absolute value of the zeta potential increased. The above results show that the stability of the solution was improved. The contents of ß-sheet and ß-turn gradually decreased, while the content of α-helix increased, and the fluorescence spectrum of the black bean protein isolate showed a red shift phenomenon, indicating that the structure of the protein isolate and its polypeptide chain were prolonged, and the foaming property, emulsification property and in vitro digestibility were significantly improved after germination. Therefore, germination not only improves functional properties, but also nutritional content.
RESUMO
A visible-light-induced highly efficient C(sp3)-H amination of ethers with amides and azoles has been presented under mild conditions via a nitrogen- and carbon-centered radical coupling process. This protocol successfully utilizes 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and tert-butyl nitrite (TBN) as cocatalysts to deliver the aminated products of ethers under aerobic conditions. Notably, the developed reaction features the corresponding products in good yields (up to 93%) with a wide substrate scope. The mechanistic study indicates that C-N bond formation proceeds via a direct radical cross-coupling process. Preliminary biological activity analysis indicates that the resulting products have good and selective inhibitory activity on osteosarcoma (OS) cell lines and are promising for use as hits for drug discovery.
RESUMO
Microwave thermotherapy (MWT) has shown great potential in cancer treatment due to its deep tissue penetration and minimally invasive nature. However, the poor microwave absorption (MA) properties of the microwave thermal sensitizer in the medical frequency band significantly limit the thermal effect of MWT and then weaken the therapeutic efficacy. In this paper, a Ni-based multilayer heterointerface nanomissile of MOFs-Ni-Ru@COFs (MNRC) with improved MA performance in the desired frequency band via introducing magnetic loss and dielectric loss is developed for MWT-based treatment. The loading of the Ni nanoparticle in MNRC mediates the magnetic loss, introducing the MA in the medical frequency band. The heterointerface formed in the MNRC by nanoengineering induces significant interfacial polarization, increasing the dielectric loss and then enhancing the generated MA performance. Moreover, MNRC with the strong MA performance in the desired frequency range not only enhances the MW thermal effect of MWT but also facilitates the electron and energy transfer, generating reactive oxygen species (ROS) at tumor sites to mediate microwave dynamic therapy (MDT). The strategy of strengthening the MA performance of the sensitizer in the medical frequency band to improve MWT-MDT provides a direction for expanding the clinical application of MWT in tumor treatment.
Assuntos
Síndrome de Cockayne , Neoplasias , Humanos , Micro-Ondas , Transferência de EnergiaRESUMO
A novel mononuclear platinum(II) complex, [Pt(L-H)Cl] (1, where L= N-(4-(benzo[d]thiazol-2-yl)phenyl)-2-((2-pyridylmethyl)(2-hydroxyethyl)-amino)acetamide), was obtained by covalently tethering a benzothiazole derivative 2-(4-aminophenyl)benzothiazole to the 2-pyridylmethyl-2-hydroxyethylamine chelating PtII center. In vitro tests indicated that complex 1 displayed excellent antiproliferative activity against the tested cancer cell lines, especially liver cancer HepG-2 and SMMC-7221 cells. Importantly, the complex possessed 4.33-fold higher antiproliferative activity as compared with cisplatin against HepG-2 cells, but was less toxic to the normal cell line L02 with the selectivity index (SI = IC50(L02)/IC50(HepG-2)) value of 8.36 compared to cisplatin (SI, 1.40). The results suggested that 1 might have the potential to act as a candidate for the treatment of hepatocellular carcinoma (HCC). Cellular uptake and distribution studies showed that 1 could effectively pass through the membrane of cells, enter the nuclei and mitochondria, induce the platination of cellular DNA. The interaction of 1 with CT-DNA demonstrated that 1 could effectively bind to DNA in a dual binding mode, i.e., the intercalation of the 2-(4-aminophenyl)benzothiazole unit plus monofunctional platination of the platinum(II) moiety. In addition, Hoechst 33342 staining and flow cytometry analysis illustrated that 1 arrested the cell cycle in HepG-2 cancer cells at G2/M phases, induced mitochondrial membrane depolarization, increased ROS generation, and caused obvious cell apoptosis. Further cellular mechanism studies elucidated that 1 triggered HepG-2 cell apoptosis via the mitochondrial-mediated pathway by upregulating the gene and protein expression levels of Bax, downregulating the gene and protein expression levels of Bcl-2, and activating the caspase cascade.
Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Platina/farmacologia , Platina/metabolismo , Cisplatino/farmacologia , Cisplatino/metabolismo , Linhagem Celular Tumoral , Apoptose , DNA/metabolismo , Benzotiazóis/farmacologia , Benzotiazóis/metabolismo , Mitocôndrias , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Proliferação de CélulasRESUMO
Phosphoinositides, a small group of lipids found in all cellular membranes, have recently garnered heightened attention due to their crucial roles in diverse biological processes and different diseases. Among these, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the most abundant bis-phosphorylated phosphoinositide within the signaling system, stands notably connected to breast cancer. Not only does it serve as a key activator of the frequently altered phosphatidylinositol 3-kinase (PI3K) pathway in breast cancer, but also its conversion to phosphatidylinositol-3,4,5-triphosphate (PI(3,4,5)P3) is an important direction for breast cancer research. The generation and degradation of phosphoinositides intricately involve phosphoinositide kinases. PI(4,5)P2 generation emanates from the phosphorylation of PI4P or PI5P by two lipid kinase families: Type I phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) and Type II phosphatidylinositol-5-phosphate 4-kinases (PIP4Ks). In this comprehensive review, we focus on these two lipid kinases and delineate their compositions and respective cellular localization. Moreover, we shed light on the expression patterns and functions of distinct isoforms of these kinases in breast cancer. For a deeper understanding of their functional dynamics, we expound upon various mechanisms governing the regulation of PIP5Ks and PIP4Ks activities. A summary of effective and specific small molecule inhibitors designed for PIP5Ks or PIP4Ks are also provided. These growing evidences support PIP5Ks and PIP4Ks as promising drug targets for breast cancer.
RESUMO
BACKGROUND: At present, neuroendoscopy technology has made rapid development, and great progress has been made in the operation of lesions in the saddle area of the skull base. However, the complications of cerebrospinal fluid and intracranial infection after the operation are still important and life-threatening complications, which may lead to poor prognosis. AIM: To investigate the method of in situ bone flap combined with nasal septum mucosal flap for reconstruction of enlarged skull base defect by endonasal sphenoidal approach and to discuss its application effect. METHODS: Clinical data of 24 patients undergoing transnasal sphenoidal endoscopic approach in the Department of Neurosurgery, Affiliated 2 Hospital of Nantong University from January 2019 to December 2022 were retrospectively analyzed. All patients underwent multi-layer reconstruction of skull base using in situ bone flap combined with nasal septum mucosa flap. The incidence of intraoperative and postoperative cerebrospinal fluid leakage and intracranial infection were analyzed, and the application effect and technical key points of in situ bone flap combined with nasal septum mucosa flap for skull base bone reconstruction were analyzed. RESULTS: There were 5 cases of high flow cerebrospinal fluid (CSF) leakage and 7 cases of low flow CSF leakage. Postoperative cerebrospinal fluid leakage occurred in 2 patients (8.3%) and intracranial infection in 2 patients (8.3%), which were cured after strict bed rest, continuous drainage of lumbar cistern combined with antibiotic treatment, and no secondary surgical repair was required. The patients were followed up for 8 to 36 months after the operation, and no delayed cerebrospinal fluid leakage or intracranial infection occurred during the follow-up. Computed tomography reconstruction of skull base showed satisfactory reconstruction after surgery. CONCLUSION: The use of in situ bone flap combined with vascular pedicled mucous flap to reconstruction of skull base defect after endonasal sphenoidal approach under neuroendoscopy has a lower incidence of cerebrospinal fluid leakage and lower complications, which has certain advantages and is worthy of clinical promotion.
RESUMO
Background: The coronavirus disease 2019 (COVID-19) pandemic is a rapidly evolving global emergency and continuously poses a serious threat to public health, highlighting the urgent need of identifying biomarkers for disease severity and progression. In order to early identify severe and critical patients, we retrospectively analyze the clinical characteristics and risk indicators of severe disease in patients with corona virus disease 2019 (COVID-19). Methods: A total of 420 confirmed COVID-19 patients were included in the study. According to the "Diagnosis and Treatment of novel coronavirus Pneumonia (10th Edition)", the cases were divided into mild group (n = 243) and severe group (n =177). Laboratory parameters were analyzed in combination with clinical data. Results: Male patients over 46 years who have smoking habits were more likely to suffer from severe COVID-19. Critically ill patients had lower lymphocyte counts and red blood cell counts, and higher white blood cell counts (P<0.05). Expectedly, serum inflammatory factors (NLR, PLR, LMR, CLR, PCT, CRP), coagulation markers (APTT, PT, TT, FIB, D-Dimer), Myocardial damage markers (hs-TNT, LDH) were significantly increased (P<0.05) in severe COVID-19 patients. Surprisedly, those patients showed obviously elevated levels of common tumor markers (ProGRP, CYFRA21-1, SCC, NSE) (P<0.05). In this case, the levels of tumor marker reflected more the condition of inflammation than the growth of tumor. More importantly, HA and PIIIN-P were highly associated with COVID-19 severity. The AUC of the ROC curve for the diagnosis of severe COVID-19 by HA and PIIIN-P was 0.826. Meanwhile, HA was positively correlated with myocardial damage markers (hs-TNT, LDH). PIIIN-P was positively correlated with myocardial damage markers (hs-TNT, LDH) and inflammatory factors (NLR, PLR, LMR, CLR, ProGRP, SCC, PCT, CRP). On the contrary, PIIIN-P was negatively correlated with pulmonary function indexes (oxygenation index and oxygen saturation of hemoglobin). Conclusion: HA and PIIIN-P are highly associated with disease severity and progression of COVID-19 and can be used as new markers for the prediction of severe COVID-19.
Assuntos
COVID-19 , Humanos , Masculino , COVID-19/diagnóstico , Pró-Colágeno , Ácido Hialurônico , Estudos Retrospectivos , Inflamação , Biomarcadores , Gravidade do PacienteRESUMO
Background: This study examined the intent to be COVID-19 vaccinated and its correlates among patients with a pacemaker. Methods: This observational study was carried out between July 1, 2021, and May 17, 2022 in Beijing, China. Patients with a pacemaker were consecutively invited by a research physician to participate in the study. Intent to be COVID-19 vaccinated, depression, anxiety, insomnia, pain and smoking were measured with standard scales or questions. Results: Of the 206 participating patients, 72.82% (N = 150; 95% confidence interval [CI]: 66.74%-78.89%) expressed an intention to be COVID-19 vaccinated. Intent to be COVID-19 vaccinated was not significantly associated with severity of depression, anxiety, and insomnia. Multiple logistic regression analysis revealed that patients believing that COVID-19 vaccines provided protection and smokers were more likely to express an intention to receive COVID-19 vaccines. In contrast, older patients and those with higher level of physical pain were less likely to express an intention to be vaccinated against COVID-19. Conclusions: Specific vaccination promotion strategies should be implemented targeting this vulnerable segment of the population.