Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687211

RESUMO

This study aimed to extract and purify polyphenols from Acanthopanax senticosus. A new green method was developed, in which ionic liquids (ILs) were used as aqueous two-phase (ATP) adjuvants to extract the polyphenols from A. senticosus. An ionic liquid-assisted aqueous two-phase system (IL-ATPS) was established. The purification of the polyphenols from the extraction fluid by AB-8 macroporous resin was conducted, and the kinetic mechanisms were studied. The reuse of ionic liquids was executed. The results showed that an [OMIM]Br-assisted ethanol/NaH2PO4 system (IL-ATPS) was the best extraction solvent. In this study, the following optimal extraction conditions were determined: 32 wt.% ethanol, 25 wt.% NaH2PO4, 9 wt.% additional ionic liquid, a solid-liquid ratio of 1:40 g/mL, an extraction temperature of 50 °C, a pH of 4.0, an extraction time of 50 min, and an extraction rate of the polyphenols at 15.90 mg/g. The optimum adsorption parameters of the macroporous resin AB-8 were as follows: a flow rate of 3.5 BV·h-1, a sample volume of 40 mL, an elution flow rate of 3.5 BV·h-1, an eluent volume of 80 mL, and an eluant that was constituted by an 85% volume fraction of ethanol. The decolorization effect of 4% activated carbon was better than the other amounts; in addition, a decolorization rate of 76.81% and an ionic liquid recovery rate of 81.12% were found to be the most optimal. Compared with the traditional extraction methods, IL-ATPS has the advantages of requiring simple operation, saving time, and high efficiency. In addition, it can be used for the extraction of the polyphenolic compounds.


Assuntos
Eleutherococcus , Líquidos Iônicos , Solventes , Etanol , Polifenóis , Resinas Vegetais
2.
Biomed Pharmacother ; 160: 114340, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36738503

RESUMO

Renal fibrosis, an important pathological change in the development of diabetic kidney disease (DKD), urgently needs new treatment methods clinically. The Jiedu Tongluo Baoshen (JTBF) formula was created based on the theory of toxic damage to the kidney collaterals, and a variety of active ingredients in JTBF have inhibitory effects on epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM). In this study, the Ultra Performance Liquid Chromatography (UPLC) was employed to analyze the effective ingredients in the JTBF formula. After screening in the PubChem database, we identified 94 active compounds of JTBF and predicted the SIRT1 pathway as potential targets through network pharmacology. In addition, in the high fat diet (HFD)+Streptozocin (STZ)-induced DKD rat model and high glucose (HG)-induced NRK-52E cell model, JTBF treatment activates the phosphorylation of LKB1 and AMPK and enhances the autophagy activity of NRK-52E cells, thereby reducing the accumulation of EMT and ECM. These results have been confirmed in vivo and in vitro experiments. JTBF enhances the autophagy activity of renal tubular epithelial cells and inhibits the progression of DKD renal fibrosis by activating the SIRT1/LKB1/AMPK signal pathway. This study provides new insights into the molecular mechanism of JTBF to prevent and treat DKD renal fibrosis.


Assuntos
Proteínas Quinases Ativadas por AMP , Nefropatias Diabéticas , Ratos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Sirtuína 1/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/metabolismo , Fibrose , Células Epiteliais , Autofagia , Transição Epitelial-Mesenquimal
4.
Front Pharmacol ; 13: 988175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483738

RESUMO

The Hippo signaling pathway is involved in cell growth, proliferation, and apoptosis, and it plays a key role in regulating organ size, tissue regeneration, and tumor development. The Hippo signaling pathway also participates in the occurrence and development of various human diseases. Recently, many studies have shown that the Hippo pathway is closely related to renal diseases, including renal cancer, cystic kidney disease, diabetic nephropathy, and renal fibrosis, and it promotes the transformation of acute kidney disease to chronic kidney disease (CKD). The present paper summarizes and analyzes the research status of the Hippo signaling pathway in different kidney diseases, and it also summarizes the expression of Hippo signaling pathway components in pathological tissues of kidney diseases. In addition, the present paper discusses the positive therapeutic significance of traditional Chinese medicine (TCM) in regulating the Hippo signaling pathway for treating kidney diseases. This article introduces new targets and ideas for drug development, clinical diagnosis, and treatment of kidney diseases.

5.
J Ethnopharmacol ; 293: 115246, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35398500

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) has been applied to diabetic kidney disease (DKD). A large number of animal trials each year focus on TCM for DKD, but the evidence for these preclinical studies is not clear. AIM OF THE STUDY: The aim of this study was to study the therapeutic effect of Jiedu Tongluo Baoshen formula (JTBF) on DKD proteinuria and renal protection. At the same time, it is verified that JTBF can reduce podocyte injury by enhancing autophagy function, and then achieve the effect of proteinuria. MATERIALS AND METHODS: We use high performance liquid chromatography to detect and analyze the fingerprint of JTBF to find the chemical composition. Subsequently, we constructed a DKD rat model induced by high-fat diet and streptozocin (HFD + STZ). Urine and blood biochemical automatic analyzer were used to detect 24-h urine protein quantification (24 h-UP) and renal function. The renal pathological changes were observed by H&E and transmission electron microscopy (TEM), and the levels of autophagy-related proteins and mRNA in podocytes were detected by immunohistochemistry, RT-qPCR and Western Blot. The chemical composition of JTBF was screened from traditional Chinese medicine systems pharmacol (TCMSP) and PubChem databases, and the potential targets and associated pathways of JTBF were predicted using kyoto encyclopedia of genes and genomes (KEGG) and protein-protein interaction (PPI) network analysis in network pharmacology, and confirmed in animal experiments and histopathological methods. RESULTS: We discovered 77 active ingredients of JTBF. Through animal experiments, it was found that JTBF reduced 24 h-UP and promoted the expression of podocin, nephrin, and WT-1 in podocytes, thereby reducing podocyte damage. At the same time, JTBF activates the expression of podocyte autophagy-related proteins (beclin-1, LC3 and P62). Subsequently, through network pharmacology predictions, 208 compounds were obtained from JTBF, and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) was a potential signal pathway. JTBF was obtained in DKD rat kidney tissue to inhibit the expression of PI3K, Akt and mTOR related proteins. CONCLUSIONS: JTBF enhance podocyte autophagy to reduce podocyte damage, thereby effectively treating DKD proteinuria and protecting kidney function.


Assuntos
Autofagia , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Podócitos , Proteinúria , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Podócitos/efeitos dos fármacos , Proteinúria/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
6.
Phytother Res ; 36(2): 857-872, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026867

RESUMO

Vascular dysfunction can lead to a variety of fatal diseases, including cardiovascular and cerebrovascular diseases, metabolic syndrome, and cancer. Although a large number of studies have reported the therapeutic effects of natural compounds on vascular-related diseases, ginseng is still the focus of research. Ginseng and its active substances have bioactive effects against different diseases with vascular dysfunction. In this review, we summarized the key molecular mechanisms and signaling pathways of ginseng, its different active ingredients or formula in the prevention and treatment of vascular-related diseases, including cardiac-cerebral vascular diseases, hypertension, diabetes complications, and cancer. Moreover, the bidirectional roles of ginseng in promoting or inhibiting angiogenesis have been highlighted. We systematically teased out the relationship between ginseng and vascular dysfunction, which could provide a basis for the clinical application of ginseng in the future.


Assuntos
Hipertensão , Panax , Humanos , Hipertensão/tratamento farmacológico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA