Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Pharmacol Res ; 203: 107137, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522761

RESUMO

Peptide stapling, by employing a stable, preformed alpha-helical conformation, results in the production of peptides with improved membrane permeability and enhanced proteolytic stability, compared to the original peptides, and provides an effective solution to accelerate the rapid development of peptide drugs. Various reviews present peptide stapling chemistries, anchoring residues and one- or two-component cyclization, however, therapeutic stapled peptides have not been systematically summarized, especially focusing on various disease-related targets. This review highlights the latest advances in therapeutic peptide drug development facilitated by the application of stapling technology, including different stapling techniques, synthetic accessibility, applicability to biological targets, potential for solving biological problems, as well as the current status of development. Stapled peptides as therapeutic drug candidates have been classified and analysed mainly by receptor- and ligand-based stapled peptide design against various diseases, including cancer, infectious diseases, inflammation, and diabetes. This review is expected to provide a comprehensive reference for the rational design of stapled peptides for different diseases and targets to facilitate the development of therapeutic peptides with enhanced pharmacokinetic and biological properties.


Assuntos
Peptídeos , Humanos , Animais , Peptídeos/uso terapêutico , Peptídeos/química , Peptídeos/farmacologia , Desenho de Fármacos
2.
J Cell Physiol ; 239(4): e31178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38214211

RESUMO

Glioblastoma stem cells (GSCs) exert a crucial influence on glioblastoma (GBM) development, progression, resistance to therapy, and recurrence, making them an attractive target for drug discovery. UTX, a histone H3K27 demethylase, participates in regulating multiple cancer types. However, its functional role in GSCs remains insufficiently explored. This study aims to investigate the role and regulatory mechanism of UTX on GSCs. Analysis of TCGA data revealed heightened UTX expression in glioma, inversely correlating with overall survival. Inhibiting UTX suppressed GBM cell growth and induced apoptosis. Subsequently, we cultured primary GSCs from three patients, observing that UTX inhibition suppressed cell proliferation and induced apoptosis. RNA-seq was performed to analyze the gene expression changes after silencing UTX in GSCs. The results indicated that UTX-mediated genes were strongly correlated with GBM progression and regulatory tumor microenvironment. The transwell co-cultured experiment showed that silencing UTX in the transwell chamber GSCs inhibited the well plate cell proliferation. Protein-protein interaction analysis revealed that periostin (POSTN) played a role in the UTX-mediated transcriptional regulatory network. Replenishing POSTN reversed the effects of UTX inhibition on GSC proliferation and apoptosis. Our study demonstrated that UTX inhibition hindered POSTN expression by enhancing the H3K27me2/3 level, eventually resulting in inhibiting proliferation and promoting apoptosis of patient-derived GSCs. Our findings may provide a novel and effective strategy for the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Histona Desmetilases , Células-Tronco Neoplásicas , Humanos , Apoptose/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Periostina , Microambiente Tumoral , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo
3.
J Control Release ; 366: 746-760, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237688

RESUMO

Faced with the threat of lung cancer-related deaths worldwide, small interfering RNA (siRNA) can silence tumor related messenger RNA (mRNA) to tackle the issue of drug resistance with enhanced anti-tumor effects. However, how to increase lung tumor targeting and penetration with enhanced gene silencing are the issues to be addressed. Thus, the objective of this study is to explore the feasibility of designing non-viral siRNA vectors for enhanced lung tumor therapy via inhalation. Here, shell-core based polymer-lipid hybrid nanoparticles (HNPs) were prepared via microfluidics by coating PLGA on siRNA-loaded cationic liposomes (Lipoplexes). Transmission electron microscopy and energy dispersive spectroscopy study demonstrated that HNP consists of a PLGA shell and a lipid core. Atomic force microscopy study indicated that the rigidity of HNPs could be well tuned by changing thickness of the PLGA shell. The designed HNPs were muco-inert with increased stability in mucus and BALF, good safety, enhanced mucus penetration and cellular uptake. Crucially, HNP1 with the thinnest PLGA shell exhibited superior transfection efficiency (84.83%) in A549 cells, which was comparable to that of lipoplexes and Lipofectamine 2000, and its tumor permeability was 1.88 times that of lipoplexes in A549-3T3 tumor spheroids. After internalization of the HNPs, not only endosomal escape but also lysosomal exocytosis was observed. The transfection efficiency of HNP1 (39.33%) was 2.26 times that of lipoplexes in A549-3T3 tumor spheroids. Moreover, HNPs exhibited excellent stability during nebulization via soft mist inhaler. In conclusion, our study reveals the great potential of HNP1 in siRNA delivery for lung cancer therapy via inhalation.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , RNA Interferente Pequeno , Lipossomos , Transfecção , Células A549
4.
J Diabetes Investig ; 15(3): 288-299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38013600

RESUMO

AIMS: This research aimed to investigate the specific mechanism of methyltransferase like 3 (METTL3) in the progression of diabetic kidney disease (DKD). MATERIALS AND METHODS: The model of diabetic kidney disease was established with HK-2 cells and mice in vitro and in vivo. The N6 methyladenosine (m6A) contents in the cells and tissues were detected with a commercial kit and the m6A levels of PTEN induced putative kinase 1 (PINK2) were detected with a MeRIP kit. The mRNA and protein levels were determined with RT-qPCR and western blot. The ROS, TNF-α, and IL-6 levels were assessed with ELISA. The cell proliferative ability was measured by a CCK-8 assay and cell apoptosis was determined with TUNEL staining. The HE and Masson staining was performed to observe the renal morphology. The RIP assay was conducted to detect the interaction between METTL3/YTHDF2 and PINK1. RESULTS: The m6A content and METTL3 levels were prominently elevated in diabetic kidney disease. METTL3 silencing promoted the cell growth and the expression of LC3 II, PINK1, and Parkin, while inhibiting the cell apoptosis and the expression of LC3 I and p62 in the high glucose (HG) stimulated HK-2 cells. METTL3 silencing also decreased the ROS, TNF-α, and IL-6 levels in diabetic kidney disease. PINK1 silencing neutralized the function of sh-METTL3 in the HG stimulated HK-2 cells. The HE and Masson staining showed that METTL3 silencing alleviated the kidney injury induced by DKD. METTL3 silencing decreased the m6A levels of PINK1, while increased the mRNA levels of PINK1 which depended on YTHDF2. CONCLUSIONS: METTL3 silencing could inhibit the progression of diabetic nephropathy in vivo and in vitro by regulating the m6A modification of PINK1, which depends on YTHDF2. Our research lays the theoretical foundation for the precise treatment of diabetic kidney disease and the development of targeted drugs in the future.


Assuntos
Adenina , Diabetes Mellitus , Nefropatias Diabéticas , Animais , Camundongos , Adenina/análogos & derivados , Nefropatias Diabéticas/genética , Interleucina-6 , Mitofagia , Proteínas Quinases , Espécies Reativas de Oxigênio , RNA Mensageiro , Fator de Necrose Tumoral alfa , Humanos
5.
J Virol ; 97(11): e0093723, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37909729

RESUMO

IMPORTANCE: The synergy of two oncogenic retroviruses is an essential phenomenon in nature. The synergistic replication of ALV-J and REV in poultry flocks increases immunosuppression and pathogenicity, extends the tumor spectrum, and accelerates viral evolution, causing substantial economic losses to the poultry industry. However, the mechanism of synergistic replication between ALV-J and REV is still incompletely elusive. We observed that microRNA-155 targets a dual pathway, PRKCI-MAPK8 and TIMP3-MMP2, interacting with the U3 region of ALV-J and REV, enabling synergistic replication. This work gives us new targets to modulate ALV-J and REV's synergistic replication, guiding future research on the mechanism.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , MicroRNAs , Doenças das Aves Domésticas , Vírus da Reticuloendoteliose , Animais , Vírus da Reticuloendoteliose/genética , Vírus da Leucose Aviária/genética , Galinhas , MicroRNAs/genética , Replicação Viral
6.
J Vis Exp ; (195)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37318259

RESUMO

The three-dimensional (3D) reconstruction of pulmonary nodules using medical images has introduced new technical approaches for diagnosing and treating pulmonary nodules, and these approaches are progressively being acknowledged and adopted by physicians and patients. Nonetheless, constructing a relatively universal 3D digital model of pulmonary nodules for diagnosis and treatment is challenging due to device differences, shooting times, and nodule types. The objective of this study is to propose a new 3D digital model of pulmonary nodules that serves as a bridge between physicians and patients and is also a cutting-edge tool for pre-diagnosis and prognostic evaluation. Many AI-driven pulmonary nodule detection and recognition methods employ deep learning techniques to capture the radiological features of pulmonary nodules, and these methods can achieve a good area under-the-curve (AUC) performance. However, false positives and false negatives remain a challenge for radiologists and clinicians. The interpretation and expression of features from the perspective of pulmonary nodule classification and examination are still unsatisfactory. In this study, a method of continuous 3D reconstruction of the whole lung in horizontal and coronal positions is proposed by combining existing medical image processing technologies. Compared with other applicable methods, this method allows users to rapidly locate pulmonary nodules and identify their fundamental properties while also observing pulmonary nodules from multiple perspectives, thereby providing a more effective clinical tool for diagnosing and treating pulmonary nodules.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/terapia , Tomografia Computadorizada por Raios X/métodos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/terapia , Pulmão , Processamento de Imagem Assistida por Computador/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/terapia
7.
ACS Omega ; 7(50): 46421-46427, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570220

RESUMO

Contamination is a leading cause of corrosion, foaming, and amine-absorption capacity limitation, predominantly foaming. There is currently an urgent need to identify the sources of amine foaming and eliminate them or reduce their impacts. Gas chromatography-mass spectrometry (GC-MS) and a sample pretreatment method were developed to identify and quantify the organic contaminants. Linear hydrocarbons (C12-C22), long-chain carboxylic acids and esters, alcohol ethoxylates, and benzene derivatives were detected, characterized, and quantified in amine solutions. Furthermore, the effects of the contaminant concentrations on foaming behavior were also investigated by adding those contaminants. The results reveal that the main issue of foaming is due to the presence of unsaturated fatty acids and alcohol ethoxylates, even with a small amount of 10 ppm, whereas benzene derivatives like methylpyridine, quinoline, methyl naphthalene, benzyl alcohol, octahydroacridine, and linear hydrocarbons have little effect on amine foaming, even with an amount up to 2000 ppm. Therefore, it is necessary to monitor the existence and content of these surface-active contaminants.

8.
Small ; 18(51): e2203962, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328708

RESUMO

The M13 bacteriophage (M13 phage) has emerged as an attractive bionanomaterial due to its chemistry/gene modifiable feature and unique structures. Herein, a dynamic deformable nanointerface is fabricated taking advantage of the unique feature of the M13 phage for ultrasensitive detection of pathogens. PIII proteins at the tip of the M13 phage are genetically modified to display 6His peptide for site-specific anchoring onto Ni-NTA microbeads, whereas pVIII proteins along the side of the M13 phage are orderly arranged with thousands of aptamers and their complementary strands (c-apt). The flexible M13 nanofibers with rich recognition sites act as octopus tentacles, resulting in a 19-fold improvement in the capture affinity toward the target. The competitive binding of the target pathogen releases c-apts and initiates rolling circle amplification (RCA). The sway motion of M13 nanofibers accelerates the diffusion of c-apts, thus promoting RCA efficiency. Benefiting from the strengthened capture ability toward the target and the accelerated RCA process, three-orders of magnitude improvement in the sensitivity is achieved, with a detection limit of 8 cfu mL-1 for Staphylococcus aureus. The promoted capture ability and assay performance highlights the essential role of the deformable feature of the engineered interface. This may provide inspiration for the construction of more efficient reaction interfaces.


Assuntos
Nanofibras , Peptídeos , Peptídeos/metabolismo , Bacteriófago M13/metabolismo , Nanofibras/química
9.
Cells ; 11(20)2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291177

RESUMO

Synergism between avian leukosis virus subgroup J (ALV-J) and reticuloendotheliosis virus (REV) has been reported frequently in co-infected chicken flocks. Although significant progress has been made in understanding the tumorigenesis mechanisms of ALV and REV, how these two simple oncogenic retroviruses induce synergistic oncogenicity remains unclear. In this study, we found that ALV-J and REV synergistically promoted mutual replication, suppressed cellular senescence, and activated epithelial-mesenchymal transition (EMT) in vitro. Mechanistically, structural proteins from ALV-J and REV synergistically activated the expression of Musashi-1(MSI1), which directly targeted pri-miR-147 through its RNA binding site. This inhibited the maturation of miR-147, which relieved the inhibition of NF-κB/KIAA1199/EGFR signaling, thereby suppressing cellular senescence and activating EMT. We revealed a synergistic oncogenicity mechanism induced by ALV-J and REV in vitro. The elucidation of the synergistic oncogenicity of these two simple retroviruses could help in understanding the mechanism of tumorigenesis in ALV-J and REV co-infection and help identify promising molecular targets and key obstacles for the joint control of ALV-J and REV and the development of clinical technologies.


Assuntos
Vírus da Leucose Aviária , Coinfecção , MicroRNAs , Doenças das Aves Domésticas , Animais , Doenças das Aves Domésticas/genética , NF-kappa B , Vírus da Leucose Aviária/genética , Galinhas/genética , MicroRNAs/genética , Carcinogênese/genética , Receptores ErbB
10.
Virulence ; 13(1): 1184-1198, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35795905

RESUMO

Co-infection of Marek's disease virus (MDV) and reticuloendotheliosis virus (REV) synergistically drives disease progression, yet little is known about the mechanism of the synergism. Here, we found that co-infection of REV and MDV increased their replication via the RIOK3-Akt pathway. Initially, we noticed that the viral titres of MDV and REV significantly increased in REV and MDV co-infected cells compared with single-infected cells. Furthermore, tandem mass tag peptide labelling coupled with LC/MS analysis showed that Akt was upregulated in REV and MDV co-infected cells. Overexpression of Akt promoted synergistic replication of MDV and REV. Conversely, inhibition of Akt suppressed synergistic replication of MDV and REV. However, PI3K inhibition did not affect synergistic replication of MDV and REV, suggesting that the PI3K/Akt pathway is not involved in the synergism of MDV and REV. In addition, we revealed that RIOK3 was recruited to regulate Akt in REV and MDV co-infected cells. Moreover, wild-type RIOK3, but not kinase-dead RIOK3, mediated Akt phosphorylation and promoted synergistic replication of MDV and REV. Our results illustrate that MDV and REV activated a novel RIOK3-Akt signalling pathway to facilitate their synergistic replication.


Assuntos
Coinfecção , Herpesvirus Galináceo 2 , Doença de Marek , Proteínas Serina-Treonina Quinases/metabolismo , Vírus da Reticuloendoteliose , Animais , Galinhas , Doenças Genéticas Ligadas ao Cromossomo X , Herpesvirus Galináceo 2/metabolismo , Humanos , Doença de Marek/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vírus da Reticuloendoteliose/genética , Vírus da Reticuloendoteliose/metabolismo , Imunodeficiência Combinada Severa , Replicação Viral/fisiologia
11.
BMC Vet Res ; 18(1): 131, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379256

RESUMO

BACKGROUND: Co-infection with the avian leukosis virus subgroup J (ALV-J) and the reticuloendotheliosis virus (REV) increases mutual viral replication, causing a more serious pathogenic effect by accelerating the progression of neoplasia and extending the tumor spectrum. However, the molecular mechanism underlying the synergistic replication of ALV-J and REV remains unclear. RESULTS: Here, we performed this study to compare the differentially expressed proteins among CEF cells infected with ALV-J, REV or both at the optimal synergistic infection time using TMT-based quantitative proteomics. We identified a total of 719 (292 upregulated and 427 downregulated) and 64 (35 upregulated and 29 downregulated) proteins by comparing co-infecting both viruses with monoinfecting ALV-J and REV, respectively. GO annotation and KEGG pathway analysis showed the differentially expressed proteins participated in virus-vector interaction, biological adhesion and immune response pathways in the synergistic actions of ALV-J and REV at the protein levels. Among the differentially expressed proteins, a large number of integrins were inhibited or increased in the co-infection group. Further, eight integrins, including ITGα1, ITGα3, ITGα5, ITGα6, ITGα8, ITGα9, ITGα11 and ITGß3, were validated in CEF cells by qRT-PCR or western blot. CONCLUSIONS: These findings proved that integrins may be key regulators in the mechanism of synergistic infection of REV and ALV-J, which will provide more insight into the pathogenesis of synergism of REV and ALV-J at protein level.


Assuntos
Vírus da Leucose Aviária , Vírus da Reticuloendoteliose , Animais , Vírus da Leucose Aviária/fisiologia , Galinhas , Integrinas/genética , Proteômica , Vírus da Reticuloendoteliose/genética
12.
Vet Microbiol ; 266: 109364, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35144044

RESUMO

Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that induces malignant T-cell lymphomas in chickens, leading to great economic loss in poultry industry. The unique-short kinase 3 (Us3), a serine/threonine kinase encoded by three MDV types (MDV-1, MDV-2 and HVT), is important for MDV replication. However, the mechanism of Us3 facilitating MDV replication has not been completely elucidated. In the present study, we report that Us3 significantly facilities MDV replication via inhibition of ß interferon (IFN-ß) production at the late phase of MDV infection. Overexpression or interference of Us3 significantly promoted or inhibited the replication of MDV, and accordingly inhibited or promoted the expression of IFN-ß. Further, Us3 was shown to suppresses interferon stimulatory DNA (ISD)-triggered IFN-ß production by targeting IFN regulatory factor 7 (IRF7) rather than NF-κB signaling. Moreover, Us3 but not kinase-dead (KD) Us3 mutant K220A blocked the nuclear translocation of IRF7 by inhibiting dimerization. Importantly, Us3 phosphorylated and interacted with IRF7. Furthermore, Us3-deficient MDV weakened viral replication and increased IFN-ß production in infected cells or chickens. These results indicated that Us3 interrupts the cytosolic DNA sensing pathway, thereby leading to inhibition of IFN-ß production by targeting IRF7, promoting MDV replication. Our finding expands the knowledge about the role of Us3 in MDV replication.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Animais , Galinhas , Fator VII/metabolismo , Herpesvirus Galináceo 2/genética , Proteínas Serina-Treonina Quinases/genética , Serina/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
13.
J Virol ; 96(6): e0165721, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35080427

RESUMO

Avian leukosis virus subgroup J (ALV-J) induces myelocytomas, which can metastasize to multiple organs in diseased chickens. Although metastasis is the primary cause of death in such cases, the mechanism for it remains unclear. Here, we found that interaction between ALV-J surface protein (SU) and doublecortin-like kinase 1 (DCLK1) promotes epithelial-mesenchymal transition (EMT) and cell proliferation. We found that ALV-J can activate EMT in infected cells. Subsequently, proteomics analysis revealed that DCLK1, a well-established putative tumor stem cell marker, which is highly expressed in ALV-J-infected DF-1 cells and chickens, might be a potential factor mediating EMT. Furthermore, using immunofluorescence and immunoprecipitation, we verified that SU interacts with DCLK1. Functional studies suggested that overexpression of DCLK1 increased viral replication and promoted cell proliferation by accelerating the progression of cells from the G0/G1 phase to the S phase of cell cycle, whereas RNA interference of DCLK1 reduced viral replication and arrested cell proliferation by retarding cell cycle progression from the late G1 phase into the S phase in ALV-J-infected cells. Moreover, we demonstrate that the increased accumulation of DCLK1 promotes EMT by increasing the expression of N-cadherin, vimentin, MMP2, and transcription factor Snail1 and decreasing the expression of epithelial marker E-cadherin. These results suggest that ALV-J SU interacts with DCLK1, and accelerates cell proliferation, leading to increased viral replication and ultimately activating EMT, which paves the way for tumor metastasis. IMPORTANCE Tumor metastasis is a major challenge in cancer research, because of its systemic nature and the resistance of disseminated tumor cells to existing therapeutic agents. It is estimated that >90% of mortality from cancer is attributable to metastases. We found that ALV-J can activate EMT, which plays a critical role in cancer metastasis. Subsequently, we identified a tumor stem cell marker, DCLK1, in ALV-J infected cells, which interacts with surface protein (SU) of ALV-J to promote virus replication, activate EMT, and accelerate cell proliferation enabling ALV-J to obtain metastatic ability. Understanding the process of participation of ALV-J in EMT and the route of metastasis will help elucidate the mechanism of virus-induced tumor metastasis and help identify promising molecular targets and key obstacles for ALV-J control and clinical technology development.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Quinases Semelhantes a Duplacortina , Transição Epitelial-Mesenquimal , Proteínas de Membrana , Animais , Leucose Aviária/fisiopatologia , Vírus da Leucose Aviária/genética , Proliferação de Células , Galinhas , Quinases Semelhantes a Duplacortina/metabolismo , Proteínas de Membrana/metabolismo
14.
Aging (Albany NY) ; 13(10): 14065-14077, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34037532

RESUMO

Long noncoding RNAs play key roles in several cancers, but their potential functions in gastroenteropancreatic neuroendocrine neoplasms remain to be investigated. We performed GeneChip assay to explore differentiated lncRNAs in gastric NENs and peri-cancerous tissues. The regulation of HNF1A-AS1 on biological behavior of GEP-NENs cells and in vivo xenograft model was confirmed by CCK8, colony formation assay, transwell, western blot and qRT-PCR. We next detected the potential transcription factors and the binding sites between them with bioinformatic analysis. qRT-PCR was performed to analyze the exact relationship between them. HNF1A-AS1 expression was decreased in gastric NENs tissues (p < 0.01). Over-expression of HNF1A-AS1 suppressed cellular proliferation, migration and invasion. Knockdown of transcription factor 3 inhibited the expression of HNF1A-AS1 and promoted cellular migration and invasion. Oncostatin M was identified as the downstream target of HNF1A-AS1. Inhibition of transforming growth factor-ß activity inhibited HNF1A-AS1/Oncostatin M-mediated epithelial-mesenchymal transition. Our data suggest that transcription factor 3/HNF1A-AS1/Oncostatin M axis inhibits the tumorigenesis and metastasis of gastroenteropancreatic neuroendocrine neoplasms via transforming growth factor-ß signaling.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias Intestinais/genética , Tumores Neuroendócrinos/genética , Oncostatina M/genética , Neoplasias Pancreáticas/genética , RNA Longo não Codificante/genética , Transdução de Sinais , Neoplasias Gástricas/genética , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Intestinais/patologia , Invasividade Neoplásica , Tumores Neuroendócrinos/patologia , Oncostatina M/metabolismo , Neoplasias Pancreáticas/patologia , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Neoplasias Gástricas/patologia
15.
Inflammation ; 44(3): 835-845, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33738649

RESUMO

The present study is designed to investigate the effect of hydroxysafflor yellow A (HYA) on Staphylococcus aureus (S. aureus)-induced mouse endometrial inflammation and to explore its molecular mechanism. We established a mouse endometritis model by intrauterine injection of S. aureus and intrauterine injection of HYA for treatment. Immunohistochemistry, immunofluorescence, and Western blot were used to detect protein expression in uterine tissue, and qPCR was used to measure mRNA expression. HYA could significantly weak uterine pathological changes caused by S. aureus and reduce MPO activity, CD45, CD3, and ED-1 protein expression in uterine tissues of S. aureus-infected mice. Similarly, HYA also significantly decreased S. aureus induced the increase in TNF-α, IL-1ß, and IL-6 in uterine tissue. In vivo, we found that knockdown of TLR2 was very important could significantly reduce S. aureus induced the elevated expression of TNF-α, IL-1ß, and IL-6 in mEECs. Importantly, in terine tissues of S. aureus-infected mice, HYA significantly decreased the ratio of p-p65/p65, p-IKBα/IKBα, p-p38/p38, p-Erk/Erk, and p-JNK/JNK expression. HYA displays anti-inflammatory effects on S. aureus mouse endometrial inflammation, and this effect might be related to HYA which could block TLR2-mediated NF-kB and MAPK pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Chalcona/análogos & derivados , Endometrite/prevenção & controle , Endométrio/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Quinonas/farmacologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/patogenicidade , Receptor 2 Toll-Like/metabolismo , Animais , Linhagem Celular , Chalcona/farmacologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Endometrite/enzimologia , Endometrite/imunologia , Endometrite/microbiologia , Endométrio/enzimologia , Endométrio/imunologia , Endométrio/microbiologia , Feminino , Interações Hospedeiro-Patógeno , Camundongos Endogâmicos BALB C , Fosforilação , Transdução de Sinais , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Receptor 2 Toll-Like/genética
16.
Stem Cells Transl Med ; 9(12): 1631-1642, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32785966

RESUMO

Tissue engineering using adult human mesenchymal stem cells (MSCs) seeded within biomaterial scaffolds has shown the potential to enhance bone healing. Recently, we have developed an injectable, biodegradable methacrylated gelatin-based hydrogel, which was especially effective in producing scaffolds in situ and allowed the delivery of high viable stem cells and gene vehicles. The well-demonstrated benefits of recombinant adeno-associated viral (rAAV) vector, including long-term gene transfer efficiency and relative safety, combination of gene and cell therapies has been developed in both basic and translational research to support future bone tissue regeneration clinical trials. In this study, we have critically assessed the applicability of single-step visible light (VL) photocrosslinking fabrication of gelatin scaffold to deliver rAAV encoding human bone morphogenetic protein-2 (BMP-2) gene to address the need for sustained BMP-2 presence localized within scaffolds for the repair of cranial bone defect in mouse model. In this method, rAAV-BMP-2 and human bone marrow-derived MSCs (hBMSCs) were simultaneously included into gelatin scaffolds during scaffold formation by VL illumination. We demonstrated that the subsequent release of rAAV-BMP-2 constructs from the scaffold matrix, which resulted in efficient in situ expression of BMP-2 gene by hBMSCs seeded within the scaffolds, and thus induced their osteogenic differentiation without the supplement of exogenous BMP-2. The reparative capacity of this novel stem cell-seeded and gene-activated scaffolds was further confirmed in the cranial defect in the severe combined immunodeficiency mice, revealed by imaging, histology, and immunohistochemistry at 6 weeks after cranial defect treatment.


Assuntos
Proteína Morfogenética Óssea 2/uso terapêutico , Regeneração Óssea/fisiologia , Crânio/transplante , Engenharia Tecidual/métodos , Animais , Proteína Morfogenética Óssea 2/farmacologia , Humanos , Camundongos , Alicerces Teciduais
17.
Gastric Cancer ; 23(4): 591-599, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32026156

RESUMO

BACKGROUND: To investigate the recent epidemiological trends of gastric neuroendocrine neoplasms (GNENs) and establish a new tool to estimate the prognosis of gastric neuroendocrine carcinoma (GNEC) and gastric neuroendocrine tumor (GNET). METHODS: Nomograms were established based on a retrospective study on patients diagnosed with GNENs from 1975 to 2016 in Surveillance, Epidemiology and End Results database. External validation was performed among 246 GNENs patients in Jiangsu province to verify the discrimination and calibration of the nomograms. RESULTS: The age-adjusted incidence of GNENs has increased from 0.309 to 6.149 per 1,000,000 persons in the past 4 decades. Multivariate analysis indicated independent prognostic factors for both GNEC and GNET including age, distant metastasis and surgical intervention (P < 0.05). In addition, T, N staging and grade were significantly associated with survival of GNEC, while size was a predictor for GNET (P < 0.05). The C-indexes of the nomograms were 0.840 for GNEC and 0.718 for GNET, which were higher than those of the 8th AJCC staging system (0.773 and 0.599). Excellent discrimination was observed in the validation cohorts (C-index of nomogram vs AJCC staging for GNEC: 0.743 vs 0.714; GNET: 0.945 vs 0.927). Survival rates predicted by nomograms were close to the actual survival rates in the calibration plots in both training and validation sets. CONCLUSIONS: The incidence of the GNENs is increasing steadily in the past 40 years. We established more excellent nomograms to predict the prognosis of GNENs than traditional staging system, helping clinicians to make tailored decisions.


Assuntos
Tumores Neuroendócrinos/epidemiologia , Tumores Neuroendócrinos/patologia , Nomogramas , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/patologia , Adulto , Idoso , Feminino , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Tumores Neuroendócrinos/cirurgia , Prognóstico , Estudos Retrospectivos , Programa de SEER , Neoplasias Gástricas/cirurgia , Taxa de Sobrevida , Estados Unidos
18.
J Org Chem ; 84(7): 4179-4190, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30870591

RESUMO

Exploring new catalysts for efficient organic synthesis is among the most attractive topics in chemistry. Here, using Ni(OAc)2/LA as catalyst (LA: Lewis acid), a novel catalyst strategy was developed for oxidative coupling of thiols and phosphonates to phosphorothioates with oxygen oxidant. The present study discloses that when Ni(OAc)2 alone was employed as the catalyst, the reaction proceeded very sluggishly with low yield, whereas adding non-redox-active metal ions such as Y3+ to Ni(OAc)2 dramatically promoted its catalytic efficiency. The promotional effect is highly Lewis acidity dependent on the added Lewis acid, and generally, a stronger Lewis acid provided a better promotional effect. The stopped-flow kinetics confirmed that adding Y(OTf)3 can obviously accelerate the activation of thiols by Ni(II) and next accelerate its reaction with phosphonate to generate the phosphorothioate product. ESI-MS characterizations of the catalyst disclosed the formation of the heterobimetallic Ni(II)/Y(III) species in the catalyst solution. Additionally, this Ni(II)/LA catalyst can be applied in the synthesis of a series of phosphorothioate compounds including several commercial bioactive compounds. This catalyst strategy has clearly supported that Lewis acid can significantly improve the catalytic efficiency of these traditional metal ions in organic synthesis, thus opening up new opportunities in their catalyst design.

19.
Virus Res ; 264: 32-39, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30797826

RESUMO

The lifecycle of avian leukosis virus subgroup J (ALV-J), a typical tumorigenic retrovirus, is highly dependent upon host cellular proteins. However, there have been few studies directed at uncovering the host proteins responsible for ALV-J replication, which could provide insights into new strategies for ALV-J prevention and control. Here, we used proteomics to identify the association of differential levels of collagen triple helix-repeat-containing 1 (CTHRC1) and with viral replication. Our results revealed that CTHRC1 was significantly upregulated in ALV-J-infected cells in vitro, and these findings were confirmed in vivo. Additionally, CTHRC1 overexpression facilitated ALV-J replication, whereas CTHRC1 knockdown suppressed this activity. Moreover, we found that ALV-J drove CTHRC1 translocation from the nucleus to the cytosol through interactions with the ALV-J envelope glycoprotein. These results revealed CTHRC1 as a shutting protein is recruited by ALV-J to facilitate viral replication.


Assuntos
Vírus da Leucose Aviária/fisiologia , Proteínas da Matriz Extracelular/genética , Interações entre Hospedeiro e Microrganismos , Proteínas do Envelope Viral/genética , Replicação Viral , Animais , Linhagem Celular , Embrião de Galinha , Galinhas/virologia , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/virologia , Proteômica , Proteínas do Envelope Viral/metabolismo
20.
Transbound Emerg Dis ; 66(2): 622-626, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30548833

RESUMO

Avian leukosis virus subgroup J (ALV-J) was isolated in meat-type breeder chickens for the first time in 1988 in the United Kingdom. Due to the application of an eradication program, there were fewer reports related to myelocytomatosis or ALV-J in China after 2013. However, there was another breakout almost simultaneously in six provinces of China in February 2018. On-site, 15- to 20-week-old broiler breeder chickens showed depression, paralysis and weight loss. Mortality for certain flocks reached 15%. Sick chickens showed numerous yellow-white neoplasms growing in the sternum, rib and lumbar vertebra and had hepatic and renal metastasis. Histopathological observation showed all neoplasms were myelocytomas, and there were massive myelocyte-like tumour cells in the liver, kidney and bone marrow. To explore the aetiology of this re-outbreak of myelocytomatosis in China, we collected tumour-bearing chickens and isolated six strains of ALV-J (GM0209-1 to -6). Phylogenetic analysis of gp85 and gp37 showed GM0209 strains were clearly distinct from the prototype strain of ADOL-7501, HPRS-103 and NX0101, and there was a mutation, R176G, in the conserved region between hr1 and hr2 regions of gp85, which was not found in other 44 ALV-J strains. The 3'UTR nucleotide sequences of GM0209 isolates showed there was a signature deletion of 11 nt that was also present in 3'UTR sequences of SCDY1 and NHH, two isolates that have a reported association with haemangioma, indicating this deletion could not determine the tumour type induced by ALV-J. Although the eradication program of ALV-J has been successfully applied in China, the outbreak of ALV-J still occurred, and the virus strain spread quickly. Thus, the biocharacteristics and pathogenesis of mutational ALV-J should be further studied.


Assuntos
Vírus da Leucose Aviária/fisiologia , Leucose Aviária/epidemiologia , Galinhas , Surtos de Doenças/veterinária , Doenças das Aves Domésticas/epidemiologia , Animais , Leucose Aviária/virologia , Vírus da Leucose Aviária/classificação , Vírus da Leucose Aviária/genética , China/epidemiologia , Mutação , Filogenia , Doenças das Aves Domésticas/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA