Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Hum Genet ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014191

RESUMO

Camurati-Engelmann disease (CED) is an autosomal dominant bone dysplasia characterized by progressive hyperostosis of the skull base and diaphyses of the long bones. CED is further divided into two subtypes, CED1 and CED2, according to the presence or absence of TGFB1 mutations, respectively. In this study, we used exome sequencing to investigate the genetic cause of CED2 in three pedigrees and identified two de novo heterozygous mutations in TGFB2 among the three patients. Both mutations were located in the region of the gene encoding the straitjacket subdomain of the latency-associated peptide (LAP) of pro-TGF-ß2. Structural simulations of the mutant LAPs suggested that the mutations could cause significant conformational changes and lead to a reduction in TGF-ß2 inactivation. An activity assay confirmed a significant increase in TGF-ß2/SMAD signaling. In vitro osteogenic differentiation experiment using iPS cells from one of the CED2 patients showed significantly enhanced ossification, suggesting that the pathogenic mechanism of CED2 is increased activation of TGF-ß2 by loss-of-function of the LAP. These results, in combination with the difference in hyperostosis patterns between CED1 and CED2, suggest distinct functions between TGFB1 and TGFB2 in human skeletal development and homeostasis.

2.
Food Chem ; 450: 139338, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38631210

RESUMO

The effect of ultrasonic intensity (28.14, 70.35, and 112.56 W/cm2) on Lignosus rhinocerotis polysaccharide (LRP) degraded by ultrasound assisted H2O2/Vc system (U-H/V) was investigated. U-H/V broke the molecular chain of LRP and improved the conformational flexibility, decreasing the molecular weight, intrinsic viscosity ([η]) and particle size. The functional groups and hyperbranched structure of LRP were almost stable after U-H/V treatment, however, the triple helix structure of LRP was partially disrupted. With increasing ultrasonic intensity, the critical aggregation concentration increased from 0.59 mg/mL to 1.57 mg/mL, and the hydrophobic microdomains reduced. Furthermore, the LRP treated with U-H/V significantly inhibited HepG2 cell proliferation by inducing apoptosis. The increase in antitumor activity of LRP was closely associated with the reduction of molecular weight, [η], particle size and hydrophobic microdomains. These results revealed that U-H/V treatment facilitates the degradation of LRP and provides a better insight into the structure-antitumor activity relationship of LRP.


Assuntos
Apoptose , Proliferação de Células , Peróxido de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Polissacarídeos , Polissacarídeos/química , Polissacarídeos/farmacologia , Humanos , Peróxido de Hidrogênio/química , Células Hep G2 , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Peso Molecular , Tamanho da Partícula , Gleiquênias/química , Ondas Ultrassônicas
3.
Acta Pharmacol Sin ; 44(12): 2492-2503, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37468692

RESUMO

Endothelial dysfunction, a central hallmark of cardiovascular pathogenesis in diabetes mellitus, is characterized by impaired endothelial nitric oxide synthase (eNOS) and NO bioavailability. However, the underlying mechanisms remain unclear. Here in this study, we aimed to identify the role of calmodulin (CaM) in diabetic eNOS dysfunction. Human umbilical vein endothelial cells and murine endothelial progenitor cells (EPCs) treated with high glucose (HG) exhibited downregulated CaM mRNA/protein and vascular endothelial growth factor (VEGF) expression with impeded eNOS phosphorylation and cell migration/tube formation. These perturbations were reduplicated in CALM1-knockdown cells but prevented in CALM1-overexpressing cells. EPCs from type 2 diabetes animals behaved similarly to HG-treated normal EPCs, which could be rescued by CALM1-gene transduction. Consistently, diabetic animals displayed impaired eNOS phosphorylation, endothelium-dependent dilation, and CaM expression in the aorta, as well as deficient physical interaction of CaM and eNOS in the gastrocnemius. Local CALM1 gene delivery into a diabetic mouse ischemic hindlimb improved the blunted limb blood perfusion and gastrocnemius angiogenesis, and foot injuries. Diabetic patients showed insufficient foot microvascular autoregulation, eNOS phosphorylation, and NO production with downregulated CaM expression in the arterial endothelium, and abnormal CALM1 transcription in genome-wide sequencing analysis. Therefore, our findings demonstrated that downregulated CaM expression is responsible for endothelium dysfunction and angiogenesis impairment in diabetes, and provided a novel mechanism and target to protect against diabetic endothelial injury.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Endotélio/metabolismo , Isquemia/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Neovascularização Fisiológica
4.
Am J Hum Genet ; 110(7): 1068-1085, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352860

RESUMO

ERI1 is a 3'-to-5' exoribonuclease involved in RNA metabolic pathways including 5.8S rRNA processing and turnover of histone mRNAs. Its biological and medical significance remain unclear. Here, we uncover a phenotypic dichotomy associated with bi-allelic ERI1 variants by reporting eight affected individuals from seven unrelated families. A severe spondyloepimetaphyseal dysplasia (SEMD) was identified in five affected individuals with missense variants but not in those with bi-allelic null variants, who showed mild intellectual disability and digital anomalies. The ERI1 missense variants cause a loss of the exoribonuclease activity, leading to defective trimming of the 5.8S rRNA 3' end and a decreased degradation of replication-dependent histone mRNAs. Affected-individual-derived induced pluripotent stem cells (iPSCs) showed impaired in vitro chondrogenesis with downregulation of genes regulating skeletal patterning. Our study establishes an entity previously unreported in OMIM and provides a model showing a more severe effect of missense alleles than null alleles within recessive genotypes, suggesting a key role of ERI1-mediated RNA metabolism in human skeletal patterning and chondrogenesis.


Assuntos
Exorribonucleases , Histonas , Humanos , Exorribonucleases/genética , Histonas/genética , Mutação de Sentido Incorreto/genética , RNA Ribossômico 5,8S , RNA , RNA Mensageiro/genética
5.
Heliyon ; 9(5): e15879, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215881

RESUMO

Background: Connexin 43 (Cx43), the predominant gap junction protein in hearts, is modified by specific (de)phosphorylation events under physiological and pathological states to affect myocardium function and structure. Previously we found that deficiency in Cx43 S282 phosphorylation could impair intercellular communication and contribute to cardiomyocyte apoptosis by activating p38 mitogen-activated protein kinase (p38 MAPK)/factor-associated suicide (Fas)/Fas-associating protein with a novel death domain (FADD) pathway, which is involved in myocardium injury in ischemia/reperfusion (I/R) heart. In addition, mutant at Cx43 S282 substituted with alanine heterozygous mice (S282A+/-) exhibited different degrees of ventricular arrhythmias and only some underwent myocardium apoptosis. In this study, we aimed to investigate the role of Cx43 pS282 in different cardiac pathological phenotypes. Methods: We examined cardiac function, structure, and relevant protein expression in S282A+/- mice (aged 2, 10 and 30 weeks) by electrocardiograph, echocardiography, histological staining, and co-immunoprecipitation followed by Western blot. Intraperitoneal isoprenaline injection and I/R surgery were applied in S282A+/- mice as external stimulus. 2,3,5-triphenyltetrazolium chloride staining was used for myocardium infarction evaluation. Results: Adult S282A+/- mice (aged 10 and 30 weeks) still exhibited spontaneous arrhythmia. Unlike neonatal stage (aged around 2 weeks), no apoptosis-related manifestations and the activation of p38 MAPK-Fas-FADD apoptotic pathway were observed in adult S282A+/- hearts. S282A+/- neonatal mice with cardiomyocytes apoptosis exhibited more than 60% dephosphorylation at Cx43 S282 than WT mice, while less than 40% S282 dephosphorylation were found in adult S282A+/- mice. In addition, although S282A+/- mice displayed normal cardiac function, they were highly susceptible to isoproterenol-induced ECG alternans and prone to cardiac injury and deaths upon I/R attack. Conclusions: These results reinforce that Cx43 S282 dephosphorylation acts as a susceptibility factor in regulating cardiomyocyte survival and cardiac electrical homeostasis in basal conditions and contributes to myocardium injury in the setting of I/R. Cx43 S282 phosphorylation was competent to induce spontaneous arrhythmias, cardiomyocyte apoptosis and deaths based on the degree of S282 dephosphorylation.

6.
Eur J Pharmacol ; 933: 175262, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36100129

RESUMO

Among pulmonary arterial hypertension (PAH) patients, right ventricular (RV) functioning has been considered a major determining factor for cardiac capacity and survival. However, despite the recognition of the clinical importance for preserving RV functioning, no effective treatments are currently available for RV failure. This study aims to suggest one such possible treatment, through investigating the cardio-protective capabilities of the anti-oxidant, melatonin (Mel), for treating adverse RV remodeling in PAH, along with its underlying mechanisms. Arginine vasopressin induced neonatal rat cardiomyocyte hypertrophy in vitro; in vivo, PAH was induced in rats through intraperitoneal monocrotaline (MCT) injections, and Mel was administered intraperitoneally 24 h prior to MCT. Mel reduced rat cardiomyocyte hypertrophy and mitochondrial oxidative stress in vitro by activating the Mst1-Nrf2 pathway, which were all reversed upon siRNA knockdown of Mst1. Likewise, in vivo, Mel pre-treatment significantly ameliorated MCT-induced deterioration in cardiac function, RV hypertrophy, fibrosis and dilation. These beneficial effects were also associated with Mst1-Nrf2 pathway up regulation and its associated reduction in oxidative stress, as evidenced by the decrease in RV malondialdehyde content. Notably, results from Mel treatment were similar, or even superior, to those obtained from N-acetyl cysteine (NAC), which has already been-confirmed as an anti-oxidative treatment for PAH. By contrast, co-treatment with the Mst1 inhibitor XMU-MP-1 reversed all of those Mel-associated beneficial effects. Our findings thus identified Mel as a potent cardio-protective agent against the onset of maladaptive RV remodeling, through enhancement of the anti-oxidative response via Mst1-Nrf2 pathway activation.


Assuntos
Hipertensão Pulmonar , Melatonina , Hipertensão Arterial Pulmonar , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Arginina Vasopressina , Cisteína/uso terapêutico , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar , Fator de Crescimento de Hepatócito/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita , Malondialdeído , Melatonina/farmacologia , Melatonina/uso terapêutico , Monocrotalina , Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , RNA Interferente Pequeno/uso terapêutico , Ratos , Remodelação Ventricular
7.
Int J Biochem Cell Biol ; 151: 106294, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041701

RESUMO

AIMS: Angiogenesis plays a key role in coronary collateral circulation (CCC), the compensatory formation of new blood vessels during chronic total coronary occlusion. This study aimed to determine whether plasmacytoma variant translocation 1 (PVT1), a long non-coding (lnc) RNA involved in tumor angiogenesis, plays a role in regulating angiogenesis during chronic coronary ischemia. MAIN METHODS: Patients with coronary artery disease, and ≥ 90% stenosis, were examined and divided into "Good" and "Poor" CCC groups based on Rentrop Cohen classification. RNA samples were obtained from all patients, as well as from oxygen and glucose-deprived (OGD) HUVECs. PVT1, miR-15b-5p and AKT3 levels were measured with RT-qPCR or Western blot, while HUVEC migration and angiogenesis were detected by, respectively, wound-healing and tube formation assays. Luciferase reporter assay confirmed direct PVT1-miR-15b-5p binding. KEY FINDINGS: Increased PVT1 was found in "Good CCC" patient plasma, along with being highly expressed among OGD HUVECs; PVT1 knockdown reduced HUVEC migration, tube formation, and pro-angiogenic factor expression. Conversely, OGD HUVECs had downregulated miR-15b-5p, and miR-15b-5p overexpression significantly depressed their angiogenic capabilities. These PVT1 knockdown- or miR-15b-5p overexpression-associated reductions in angiogenic effects were reversed by AKT3 overexpression. In vivo, neovascularization and functioning in both ischemic mice hind-limbs and infarcted myocardium injected with ADV-sh-PVT1 were reduced, which were ameliorated by concurrent antagomiR-15b-5p injections. SIGNIFICANCE: Circulating PVT1 may serve as a useful biomarker to distinguish between good versus poor CCC, as it is involved in orchestrating angiogenesis via the miR-15b-5p-AKT3 axis; it thus has potential as a target for treating ischemic disease.


Assuntos
MicroRNAs , RNA Longo não Codificante/genética , Indutores da Angiogênese , Animais , Antagomirs , Artérias/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células/genética , Glucose , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Patológica/genética , Oxigênio , RNA Longo não Codificante/metabolismo
8.
Heart Surg Forum ; 25(1): E132-E139, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35238298

RESUMO

BACKGROUND: The objective was to develop and validate an individualized nomogram to predict severe functional tricuspid regurgitation (S-FTR) after mitral valve replacement (MVR) via retrospective analysis of rheumatic heart disease (RHD) patients' pre-clinical characteristics. METHODS: Between 2001-2015, 442 MVR patients of RHD were examined. Transthoracic echocardiography detected S-FTR, and logistic regression model analyzed its independent predictors. R software established a nomogram prediction model, and Bootstrap determined its theoretical probability, which subsequently was compared with the actual patient probability to calculate the area under the curve (AUC) and calibration plots. Decision curve analysis (DCA) identified its clinical utility. RESULTS: Ninety-six patients developed S-FTR during the follow-up period. Both uni- and multivariate analyses found significant correlations between S-FTR occurrence with gender, age, atrial fibrillation (AF), pulmonary arterial hypertension (PH), left atrial diameter (LAD), and tricuspid regurgitation area (TRA). The individualized nomogram model had the AUC of 0.99 in internal verification. Calibration test indicated high agreement of predicted and actual S-FTR onset. DCA also showed that utilization of those six aforementioned factors was clinically useful. CONCLUSION: The nomogram for the patient characteristics of age, gender, AF, PH, LAD, and TRA found that they were highly predictive for future S-FTR onset within 5 years. This predictive ability therefore allows clinicians to optimize postoperative patient care and avoid unnecessary tricuspid valve surgeries.


Assuntos
Insuficiência da Valva Mitral , Insuficiência da Valva Tricúspide , Pré-Escolar , Átrios do Coração , Humanos , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Insuficiência da Valva Mitral/cirurgia , Estudos Retrospectivos , Insuficiência da Valva Tricúspide/diagnóstico , Insuficiência da Valva Tricúspide/etiologia , Insuficiência da Valva Tricúspide/cirurgia
9.
Acta Pharmacol Sin ; 43(8): 1970-1978, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34931018

RESUMO

Cx43 is the major connexin in ventricular gap junctions, and plays a pivotal role in control of electrical and metabolic communication among adjacent cardiomyocytes. We previously found that Cx43 dephosphorylation at serine 282 (pS282) caused cardiomyocyte apoptosis, which is involved in cardiac ischemia/reperfusion injury. In this study we investigated whether Cx43-S282 hyper-phosphorylation could protect cardiomyocytes against apoptosis. Adenovirus carrying rat full length Cx43 gene (Cx43-wt) or a mutant gene at S282 substituted with aspartic acid (S282D) were transfected into neonatal rat ventricular myocytes (NRVMs) or injected into rat ventricular wall. Rat abdominal aorta constriction model (AAC) was used to assess Cx43-S282 phosphorylation status. We showed that Cx43 phosphorylation at S282 was increased over 2-times compared to Cx43-wt cells at 24 h after transfection, while pS262 and pS368 were unaltered. S282D-transfected cells displayed enhanced gap junctional communication, and increased basal intracellular Ca2+ concentration and spontaneous Ca2+ transients compared to Cx43-wt cells. However, spontaneous apoptosis appeared in NRVMs transfected with S282D for 34 h. Rat ventricular myocardium transfected with S282D in vivo also exhibited apoptotic responses, including increased Bax/Bcl-xL ratio, cytochrome c release as well as caspase-3 and caspase-9 activities, while factor-associated suicide (Fas)/Fas-associated death domain expression and caspase-8 activity remained unaltered. In addition, AAC-induced hypertrophic ventricles had apoptotic injury with Cx43-S282 hyper-phosphorylation compared with Sham ventricles. In conclusion, Cx43 hyper-phosphorylation at S282, as dephosphorylation, also triggers cardiomyocyte apoptosis, but through activation of mitochondrial apoptosis pathway, providing a fine-tuned Cx43-S282 phosphorylation range required for the maintenance of cardiomyocyte function and survival.


Assuntos
Apoptose , Conexina 43 , Miócitos Cardíacos , Animais , Conexina 43/genética , Conexina 43/metabolismo , Mitocôndrias , Miócitos Cardíacos/metabolismo , Fosforilação , Ratos , Serina/metabolismo
10.
Front Genet ; 12: 714915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531897

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the most significant health problems worldwide. Some studies have reported associations between Phospholipase C epsilon 1 (PLCE1) single-nucleotide polymorphisms (SNPs) and GC susceptibility, but its relationship with GC prognosis lacked exploration, and the specific mechanisms were not elaborated fully yet. This study aimed to further explore the possible mechanism of the association between PLCE1 polymorphisms and GC. MATERIALS AND METHODS: A case-control study, including 588 GC patients and 703 healthy controls among the Chinese Han population, was performed to investigate the association between SNPs of PLCE1 and GC risk by logistic regression in multiple genetic models. The prognostic value of PLCE1 in GC was evaluated by the Kaplan-Meier plotter. To explored the potential functions of PLCE1, various bioinformatics analyses were conducted. Furthermore, we also constructed the spatial structure of PLCE1 protein using the homology modeling method to analyze its mutations. RESULTS: Rs3765524 C > T, rs2274223 A > G and rs3781264 T > C in PLCE1 were associated with the increased risk of GC. The overall survival and progression-free survival of patients with high expression of PLCE1 were significantly lower than those with low expression [HR (95% CI) = 1.38 (1.1-1.63), P < 0.01; HR (95% CI) = 1.4 (1.07-1.84), P = 0.01]. Bioinformatic analysis revealed that PLCE1 was associated with protein phosphorylation and played a crucial role in the calcium signal pathway. Two important functional domains, catalytic binding pocket and calcium ion binding pocket, were found by homology modeling of PLCE1 protein; rs3765524 polymorphism could change the efficiency of the former, and rs2274223 polymorphism affected the activity of the latter, which may together play a potentially significant role in the tumorigenesis and prognosis of GC. CONCLUSION: Patients with high expression of PLCE1 had a poor prognosis in GC, and SNPs in PLCE1 were associated with GC risk, which might be related to the changes in spatial structure of the protein, especially the variation of the efficiency of PLCE1 in the calcium signal pathway.

11.
Ann Palliat Med ; 10(5): 5590-5599, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34107710

RESUMO

BACKGROUND: Although combination of cyclin-dependent kinase 4 and 6(CDK4/6) inhibitors with endocrine therapy for advanced breast cancer (ABC) prolongs PFS in patients, but also has associated toxic side effects. However, few previous studies have summarized the toxic and side effects of CDK4/6 inhibitors. Therefore, this study summarized the corresponding toxic and side effects of CDK/6 inhibitors, which is of great importance for doctors and patients to understand how to balance the high survival rate brought by drugs with the decreased quality of life and improve the management of BC. METHODS: PubMed, Embase, The Cochrane Library, and VIP databases were systematically searched to collect randomized controlled trials (RCTs) of CDK4/6 inhibitors combined with endocrine therapy for advanced breast cancer from January 2010 to December 2019.Two investigators independently reviewed the literatures. Before using the RevMan 5.3 software for a meta-analysis, date were extracted and the risk of bias with the include studies were assessed. RESULTS: A total of 64 RCTs involving 3685 patients were included. Compared with placebo combined with endocrine therapy, CDK4/6 inhibitors combined with endocrine therapy could improve the median progression free survival rate (hazard ratio 0.54, 95% confidence interval (CI):0.50-0.60, P<0.00001). In terms of adverse reactions, CDK4/6 inhibitors combined with endocrine therapy had higher rates of neutropenia, leukopenia, thrombocytopenia, anemia, fatigue, diarrhea, febrile neutropenia, nausea and increased alanine aminotransferase (ALT). DISCUSSION: CDK4/6 inhibitors have strong specification in the treatment of ABC because of their role in regulating the cell cycle. Although CDK4/6I combined with endocrine therapy can improve the effective rate and median PFS of patients with HR+/HER2-ABC, this treatment regimen increases the incidence of adverse reactions such as neutropenia, leukopenia, thrombocytopenia, anemia, fatigue, diarrhea, febrile neutropenia, nausea and increased ALT. Further research into improving the survival rate while reducing or even avoiding the side effects of CDK4/6Isis needed for better clinical management of BC. TRIAL REGISTRATION: PROSPERO (CRD42020171112).


Assuntos
Neoplasias da Mama , Quinase 6 Dependente de Ciclina , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina , Feminino , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptor ErbB-2 , Receptores de Estrogênio
12.
Front Oncol ; 11: 665240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981613

RESUMO

BACKGROUND: Sentinel lymph node (SLN) biopsy is feasible for breast cancer (BC) patients with clinically negative axillary lymph nodes; however, complications develop in some patients after surgery, although SLN metastasis is rarely found. Previous predictive models contained parameters that relied on postoperative data, thus limiting their application in the preoperative setting. Therefore, it is necessary to find a new model for preoperative risk prediction for SLN metastasis to help clinicians facilitate individualized clinical decisions. MATERIALS AND METHODS: BC patients who underwent SLN biopsy in two different institutions were included in the training and validation cohorts. Demographic characteristics, preoperative tumor pathological features, and ultrasound findings were evaluated. Multivariate logistic regression was used to develop the nomogram. The discrimination, accuracy, and clinical usefulness of the nomogram were assessed using Harrell's C-statistic and ROC analysis, the calibration curve, and the decision curve analysis, respectively. RESULTS: A total of 624 patients who met the inclusion criteria were enrolled, including 444 in the training cohort and 180 in the validation cohort. Young age, high BMI, high Ki67, large tumor size, indistinct tumor margins, calcifications, and an aspect ratio ≥1 were independent predictive factors for SLN metastasis of BC. Incorporating these parameters, the nomogram achieved a robust predictive performance with a C-index and accuracy of 0.92 and 0.85, and 0.82 and 0.80 in the training and validation cohorts, respectively. The calibration curves also fit well, and the decision curve analysis revealed that the nomogram was clinically useful. CONCLUSIONS: We established a nomogram to preoperatively predict the risk of SLN metastasis in BC patients, providing a non-invasive approach in clinical practice and serving as a potential tool to identify BC patients who may omit unnecessary SLN biopsy.

13.
Nat Commun ; 12(1): 2046, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824347

RESUMO

Bone formation represents a heritable trait regulated by many signals and complex mechanisms. Its abnormalities manifest themselves in various diseases, including sclerosing bone disorder (SBD). Exploration of genes that cause SBD has significantly improved our understanding of the mechanisms that regulate bone formation. Here, we discover a previously unknown type of SBD in four independent families caused by bi-allelic loss-of-function pathogenic variants in TMEM53, which encodes a nuclear envelope transmembrane protein. Tmem53-/- mice recapitulate the human skeletal phenotypes. Analyses of the molecular pathophysiology using the primary cells from the Tmem53-/- mice and the TMEM53 knock-out cell lines indicates that TMEM53 inhibits BMP signaling in osteoblast lineage cells by blocking cytoplasm-nucleus translocation of BMP2-activated Smad proteins. Pathogenic variants in the patients impair the TMEM53-mediated blocking effect, thus leading to overactivated BMP signaling that promotes bone formation and contributes to the SBD phenotype. Our results establish a previously unreported SBD entity (craniotubular dysplasia, Ikegawa type) and contribute to a better understanding of the regulation of BMP signaling and bone formation.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/patologia , Proteínas de Membrana/metabolismo , Esclerose/patologia , Transdução de Sinais , Proteínas Smad/metabolismo , Animais , Sequência de Bases , Diferenciação Celular , Núcleo Celular/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos Mutantes , Mutação/genética , Osteoblastos/patologia , Linhagem , Fosforilação , Crânio/patologia , Adulto Jovem
14.
Stem Cell Reports ; 16(3): 610-625, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33636111

RESUMO

Chondrodysplasias are hereditary diseases caused by mutations in the components of growth cartilage. Although the unfolded protein response (UPR) has been identified as a key disease mechanism in mouse models, no suitable in vitro system has been reported to analyze the pathology in humans. Here, we developed a three-dimensional culture protocol to differentiate hypertrophic chondrocytes from induced pluripotent stem cells (iPSCs) and examine the phenotype caused by MATN3 and COL10A1 mutations. Intracellular MATN3 or COL10 retention resulted in increased ER stress markers and ER size in most mutants, but activation of the UPR was dependent on the mutation. Transcriptome analysis confirmed a UPR with wide-ranging changes in bone homeostasis, extracellular matrix composition, and lipid metabolism in the MATN3 T120M mutant, which further showed altered cellular morphology in iPSC-derived growth-plate-like structures in vivo. We then applied our in vitro model to drug testing, whereby trimethylamine N-oxide led to a reduction of ER stress and intracellular MATN3.


Assuntos
Cartilagem/fisiologia , Condrócitos/fisiologia , Colágeno Tipo X/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Animais , Osso e Ossos/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Cultivadas , Condrócitos/citologia , Condrogênese , Colágeno Tipo X/genética , Estresse do Retículo Endoplasmático , Matriz Extracelular/metabolismo , Edição de Genes , Perfilação da Expressão Gênica , Homeostase , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Proteínas Matrilinas/genética , Proteínas Matrilinas/metabolismo , Camundongos , Modelos Biológicos , Mutação , Osteocondrodisplasias/patologia , Fenótipo , Resposta a Proteínas não Dobradas
15.
J Hum Genet ; 66(6): 607-611, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33402699

RESUMO

Dysosteosclerosis (DOS) is a rare sclerosing bone dysplasia characterized by osteosclerosis and platyspondyly. DOS is genetically heterogeneous and causally associated with mutations in three genes, SLC29A3, CSF1R, and TNFRSF11A. TNFRSF11A has been known as the causal gene for osteopetrosis, autosomal recessive 7, and is recently reported to cause DOS in three cases, which show a complex genotype-phenotype relationship. The phenotypic spectrum of TNFRSF11A-associated sclerosing bone dysplasia remains unclear and needs to be characterized further in more cases with molecular genetic diagnosis. Here, we report another TNFRSF11A-associated DOS case with a homozygous missense mutation (p.R129C). The mutation effect is different from the previous three cases, in which truncated or elongated RANK proteins were generated in isoform specific manner, thus enriching our understanding of the genotype-phenotype association in TNFRSF11A-associated sclerosing bone dysplasia. Besides DOS, our case presented with intracranial extramedullary hematopoiesis, which is an extremely rare condition and has not been identified in any other sclerosing bone dysplasias with molecular genetic diagnosis. Our findings provide the fourth case of TNFRSF11A-associated DOS and further expand its phenotypic spectrum.


Assuntos
Hematopoese/genética , Osteosclerose/genética , Receptor Ativador de Fator Nuclear kappa-B/genética , Doenças Ósseas , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Heterogeneidade Genética , Homozigoto , Humanos , Lactente , Deficiência Intelectual , Mutação/genética , Proteínas de Transporte de Nucleosídeos/genética , Osteopetrose/genética , Osteopetrose/patologia , Osteosclerose/diagnóstico , Osteosclerose/patologia , Fenótipo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Esclerose
16.
J Bone Miner Metab ; 39(1): 45-53, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32940787

RESUMO

The RANKL/OPG/RANK signalling pathway is a major regulatory system for osteoclast formation and activity. Mutations in TNFSF11, TNFRSF11B and TNFRSF11A cause defects in bone metabolism and development, thereby leading to skeletal disorders with changes in bone density and/or morphology. To date, nine kinds of monogenic skeletal diseases have been found to be causally associated with TNFSF11, TNFRSF11B and TNFRSF11A mutations. These diseases can be divided into two types according to the mutation effects and the resultant pathogenesis. One is caused by the mutations inducing constitutional RANK activation or OPG deficiency, which increase osteoclastogenesis and accelerate bone turnover, resulting in juvenile Paget's disease 2, Paget disease of bone 2, familial expansile osteolysis, expansile skeletal hyperphosphatasia, panostotic expansile bone disease, and Paget disease of bone 5. The other is caused by the de-activating mutations in TNFRSF11A or TNFSF11, which decrease osteoclastogenesis and elevate bone density, resulting in osteopetrosis, autosomal recessive 2 and 7, and dysosteosclerosis. Here we reviewed the current knowledge about these genetic disorders with paying particular attention to the updating genotype-phenotype association in the TNFRSF11A-caused diseases.


Assuntos
Doenças Genéticas Inatas/metabolismo , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais , Doenças Genéticas Inatas/diagnóstico por imagem , Doenças Genéticas Inatas/terapia , Humanos , Osteoclastos/metabolismo , Osteoclastos/patologia , Receptor Ativador de Fator Nuclear kappa-B/genética , Transdução de Sinais/genética
17.
Ann Transl Med ; 9(23): 1742, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35071436

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the most malignant diseases and threatens the health of individuals across the globe. Hitherto, the identification of prognosis risk stratification on GC has mainly depended on the TNM staging, but owing to its inaccuracy and incompleteness, the prognostic value it offers remains controversial in the current clinical setting. Thus, an effective prognostic model for GC after radical gastrectomy is still needed. METHODS: Patients with pathologically confirmed GC who underwent radical gastrectomy from 2 different centers were retrospectively enrolled into a training and the validation cohort, respectively. The least absolute shrinkage and selection operator (LASSO) algorithm was applied to select variables among multiple factors, including clinical characteristics, pathological parameters, and surgery- and treatment-related indicators. The multivariate Cox regression method was used to establish the model to predict 1-, 2-, and 3-year survival. Both internal and external validations of the nomogram were then completed in terms of discrimination, calibration, and clinical utility. Finally, prognostic risk stratification of GC was conducted with X-tile software. RESULTS: A total of 1,424 patients with GC were eligible in this study, including 1,010 in the training cohort and 414 in the validation cohort. Seven indicators were selected by LASSO to develop the nomogram, including the number of positive lymph nodes, tumor size, adjacent organ invasion, vascular invasion, the level of carbohydrate antigen 125 (CA 125), depth of invasion, and human epidermal growth factor receptor 2 (HER2) status. The nomogram demonstrated a robust predictive capacity with favorable accuracy, discrimination, and clinical utility both in the internal and external validations. Moreover, we divided the population into 3 risk groups of survival according to the cutoff points generated by X-tile, and in this way, the nomogram was further improved into a risk-stratified prognosis model. CONCLUSIONS: We have developed a prognostic risk stratification nomogram for GC patients after radical gastrectomy with 7 available indicators that may guide clinical practice and help facilitate tailored decision-making, thus avoiding overtreatment or undertreatment and improving communication between clinicians and patients.

18.
J Hum Genet ; 66(4): 371-377, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33037392

RESUMO

Dysosteosclerosis (DOS) is a distinct form of sclerosing bone disease characterized by platyspondyly and progressive osteosclerosis. DOS is genetically heterogeneous. Three causal genes, SLC29A3, CSF1R, and TNFRSF11A are reported. TNFRSF11A-associated DOS has been identified in two patients; however, TNFRSF11A is also a causal gene for osteopetrosis, autosomal recessive 7 (OP-AR7). Whole-exome sequencing in a patient with sclerosing bone disease identified novel compound heterozygous variants (c.414_427 + 7del, c.1664del) in TNFRSF11A. We examined the impact of the two variants on five splicing isoforms of TNFRSF11A by RT-PCR. We found that c.1664del resulted in elongated proteins (p.S555Cfs*121, etc.), while c.414_427 + 7del generated two aberrant splicing products (p.A139Wfs*19 and p.E132Dfs*19) that lead to nonsense mediated mRNA decay (NMD). In the previous two cases of TNFRSF11A-associated DOS, their mutations produced truncated TNFRSF11A protein isoforms. The mutations in all three cases thus contrast with TNFRSF11A mutations reported in OP-AR7, which does not generated truncated or elongated TNFRSF11A proteins. Thus, we identified the third case of TNFRSF11A-associated DOS and reinforced the genotype-phenotype correlation that aberrant protein-producing TNFRSF11A mutations cause DOS.


Assuntos
Mutação , Osteosclerose/patologia , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Pré-Escolar , Feminino , Humanos , Osteosclerose/genética , Osteosclerose/metabolismo , Prognóstico , Sequenciamento do Exoma
19.
J Bone Miner Res ; 34(10): 1873-1879, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31163101

RESUMO

Dysosteosclerosis (DOS) is a distinct form of sclerosing bone disease characterized by irregular osteosclerosis and platyspondyly. DOS is genetically heterogeneous; however, only five cases with SLC29A3 mutations and a single case with a splice-site mutation of TNFRSF11A have been reported, and TNFRSF11A is also a causal gene for osteopetrosis, autosomal recessive 7 (OP-AR7). Thus, the causal genes of DOS and their genotype-phenotype associations remain unclear. In this study, we examined a Japanese patient with DOS and found a novel variant in TNFRSF11A. The homozygous variant was a G to T transversion at the first nucleotide of exon 9 (c.784G>T). Although the variant was predicted to cause a stop codon mutation (p.E262*), in silico evaluation of the exonic splicing elements followed by RT-PCR for the patient-derived cells showed that it caused aberrant splicing due to the change in the exonic splicing element and produced two types of aberrant transcripts: One caused a premature stop codon (p.E262Vfs*17) leading to nonsense mutation-mediated mRNA decay; the other produced a protein with interstitial deletion (p.E262_Q279del). The effects of the mutation on five splicing isoforms of TNFRSF11A were different from those in OP-AR7, but comparable with those in the first DOS with the TNFRSF11A mutation. Thus, we identified the second case of DOS caused by the TNFRSF11A splice-site mutation and confirmed the novel disease entity. © 2019 American Society for Bone and Mineral Research.


Assuntos
Códon de Terminação , Éxons , Osteosclerose/genética , Mutação Puntual , Receptor Ativador de Fator Nuclear kappa-B/genética , Povo Asiático , Humanos , Japão , Masculino , Pessoa de Meia-Idade
20.
Artigo em Inglês | MEDLINE | ID: mdl-31253595

RESUMO

OBJECTIVE: The aim of this case control study was to investigate the sizes, shapes, and articular surface angles of condyles exhibiting idiopathic condylar resorption (ICR) with different degrees of condylar bone loss and to provide additional information for the diagnosis of ICR. STUDY DESIGN: In total, 154 condyles from patients with ICR and 42 healthy condyles were included. The ICR group was further divided into 3 subgroups (ICR I, ICR II, and ICR III) based on the morphology of the condyle. Three-dimensional (3-D) models of the condyles were measured and analyzed by using the Mimics software based on cone beam computed tomography data. RESULTS: The condylar anteroposterior diameter, transverse diameter, height, superficial area, volume, articular surface angles, condylar neck angle, maximal sectional area, and condylar neck sectional area were all significantly different between the ICR group and the control group (P < .05). There were also significant differences among the 3 subgroups in many of these parameters (P < .05). CONCLUSIONS: Morphologic changes in ICR become worse as the disease progresses, with significant differences between diseased and normal condyles. There were many significant differences among the subgroups. Posteriorly inclined condylar neck and slender condylar neck may be associated with ICR.


Assuntos
Reabsorção Óssea , Côndilo Mandibular , Estudos de Casos e Controles , Tomografia Computadorizada de Feixe Cônico , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA