Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Mater ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223270

RESUMO

Nanoparticles are promising for drug delivery applications, with several clinically approved products. However, attaining high nanoparticle accumulation in solid tumours remains challenging. Here we show that tumour cell-derived small extracellular vesicles (sEVs) block nanoparticle delivery to tumours, unveiling another barrier to nanoparticle-based tumour therapy. Tumour cells secrete large amounts of sEVs in the tumour microenvironment, which then bind to nanoparticles entering tumour tissue and traffic them to liver Kupffer cells for degradation. Knockdown of Rab27a, a gene that controls sEV secretion, decreases sEV levels and improves nanoparticle accumulation in tumour tissue. The therapeutic efficacy of messenger RNAs encoding tumour suppressing and proinflammatory proteins is greatly improved when co-encapsulated with Rab27a small interfering RNA in lipid nanoparticles. Together, our results demonstrate that tumour cell-derived sEVs act as a defence system against nanoparticle tumour delivery and that this system may be a potential target for improving nanoparticle-based tumour therapies.

2.
Proc Natl Acad Sci U S A ; 121(32): e2400783121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39078677

RESUMO

Monogenic blood diseases are among the most common genetic disorders worldwide. These diseases result in significant pediatric and adult morbidity, and some can result in death prior to birth. Novel ex vivo hematopoietic stem cell (HSC) gene editing therapies hold tremendous promise to alter the therapeutic landscape but are not without potential limitations. In vivo gene editing therapies offer a potentially safer and more accessible treatment for these diseases but are hindered by a lack of delivery vectors targeting HSCs, which reside in the difficult-to-access bone marrow niche. Here, we propose that this biological barrier can be overcome by taking advantage of HSC residence in the easily accessible liver during fetal development. To facilitate the delivery of gene editing cargo to fetal HSCs, we developed an ionizable lipid nanoparticle (LNP) platform targeting the CD45 receptor on the surface of HSCs. After validating that targeted LNPs improved messenger ribonucleic acid (mRNA) delivery to hematopoietic lineage cells via a CD45-specific mechanism in vitro, we demonstrated that this platform mediated safe, potent, and long-term gene modulation of HSCs in vivo in multiple mouse models. We further optimized this LNP platform in vitro to encapsulate and deliver CRISPR-based nucleic acid cargos. Finally, we showed that optimized and targeted LNPs enhanced gene editing at a proof-of-concept locus in fetal HSCs after a single in utero intravenous injection. By targeting HSCs in vivo during fetal development, our Systematically optimized Targeted Editing Machinery (STEM) LNPs may provide a translatable strategy to treat monogenic blood diseases before birth.


Assuntos
Edição de Genes , Células-Tronco Hematopoéticas , Nanopartículas , Animais , Células-Tronco Hematopoéticas/metabolismo , Edição de Genes/métodos , Nanopartículas/química , Camundongos , Feminino , Gravidez , Lipídeos/química , Antígenos Comuns de Leucócito/metabolismo , Antígenos Comuns de Leucócito/genética , Humanos , Terapia Genética/métodos , Sistemas CRISPR-Cas , Lipossomos
3.
Nat Rev Drug Discov ; 23(8): 607-625, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38951662

RESUMO

In situ cancer vaccination refers to any approach that exploits tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. These approaches hold great promise for the treatment of many solid tumours, with numerous candidate drugs under preclinical or clinical evaluation and several products already approved. However, there are challenges in the development of effective in situ cancer vaccines. For example, inadequate release of tumour antigens from tumour cells limits antigen uptake by immune cells; insufficient antigen processing by antigen-presenting cells restricts the generation of antigen-specific T cell responses; and the suppressive immune microenvironment of the tumour leads to exhaustion and death of effector cells. Rationally designed delivery technologies such as lipid nanoparticles, hydrogels, scaffolds and polymeric nanoparticles are uniquely suited to overcome these challenges through the targeted delivery of therapeutics to tumour cells, immune cells or the extracellular matrix. Here, we discuss delivery technologies that have the potential to reduce various clinical barriers for in situ cancer vaccines. We also provide our perspective on this emerging field that lies at the interface of cancer vaccine biology and delivery technologies.


Assuntos
Vacinas Anticâncer , Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Animais , Nanopartículas , Antígenos de Neoplasias/imunologia , Microambiente Tumoral/imunologia
4.
Nat Commun ; 15(1): 4235, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762489

RESUMO

Inflammation induced by lung infection is a double-edged sword, moderating both anti-viral and immune pathogenesis effects; the mechanism of the latter is not fully understood. Previous studies suggest the vasculature is involved in tissue injury. Here, we report that expression of Sparcl1, a secreted matricellular protein, is upregulated in pulmonary capillary endothelial cells (EC) during influenza-induced lung injury. Endothelial overexpression of SPARCL1 promotes detrimental lung inflammation, with SPARCL1 inducing 'M1-like' macrophages and related pro-inflammatory cytokines, while SPARCL1 deletion alleviates these effects. Mechanistically, SPARCL1 functions through TLR4 on macrophages in vitro, while TLR4 inhibition in vivo ameliorates excessive inflammation caused by endothelial Sparcl1 overexpression. Finally, SPARCL1 expression is increased in lung ECs from COVID-19 patients when compared with healthy donors, while fatal COVID-19 correlates with higher circulating SPARCL1 protein levels in the plasma. Our results thus implicate SPARCL1 as a potential prognosis biomarker for deadly COVID-19 pneumonia and as a therapeutic target for taming hyperinflammation in pneumonia.


Assuntos
COVID-19 , Células Endoteliais , Pulmão , Ativação de Macrófagos , SARS-CoV-2 , Animais , Humanos , COVID-19/imunologia , COVID-19/virologia , COVID-19/metabolismo , COVID-19/patologia , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Células Endoteliais/imunologia , SARS-CoV-2/fisiologia , Pulmão/virologia , Pulmão/patologia , Pulmão/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Camundongos Endogâmicos C57BL , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Pneumonia Viral/metabolismo , Masculino , Macrófagos/metabolismo , Macrófagos/imunologia , Feminino , Camundongos Knockout , Proteínas da Matriz Extracelular
6.
Nat Biomed Eng ; 8(5): 513-528, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38378820

RESUMO

The broader clinical use of bispecific T cell engagers for inducing anti-tumour toxicity is hindered by their on-target off-tumour toxicity and the associated neurotoxicity and cytokine-release syndrome. Here we show that the off-tumour toxicity of a supramolecular bispecific T cell engager binding to the T cell co-receptor CD3 and to the human epidermal growth factor receptor 2 on breast tumour cells can be halted by disengaging the T cells from the tumour cells via the infusion of the small-molecule drug amantadine, which disassembles the supramolecular aggregate. In mice bearing human epidermal growth factor receptor 2-expressing tumours and with a human immune system, high intravenous doses of such a 'switchable T cell nanoengager' elicited strong tumour-specific adaptive immune responses that prevented tumour relapse, while the infusion of amantadine restricted off-tumour toxicity, cytokine-release syndrome and neurotoxicity. Supramolecular chemistry may be further leveraged to control the anti-tumour activity and off-tumour toxicity of bispecific antibodies.


Assuntos
Amantadina , Anticorpos Biespecíficos , Complexo CD3 , Linfócitos T , Animais , Humanos , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Camundongos , Complexo CD3/imunologia , Amantadina/farmacologia , Linhagem Celular Tumoral , Feminino , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico
7.
Proc Natl Acad Sci U S A ; 121(7): e2314747121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315853

RESUMO

Macrophages are integral components of the innate immune system, playing a dual role in host defense during infection and pathophysiological states. Macrophages contribute to immune responses and aid in combatting various infections, yet their production of abundant proinflammatory cytokines can lead to uncontrolled inflammation and worsened tissue damage. Therefore, reducing macrophage-derived proinflammatory cytokine release represents a promising approach for treating various acute and chronic inflammatory disorders. However, limited macrophage-specific delivery vehicles have hindered the development of macrophage-targeted therapies. In this study, we screened a pool of 112 lipid nanoparticles (LNPs) to identify an optimal LNP formulation for efficient siRNA delivery. Subsequently, by conjugating the macrophage-specific antibody F4/80 to the LNP surface, we constructed MacLNP, an enhanced LNP formulation designed for targeted macrophage delivery. In both in vitro and in vivo experiments, MacLNP demonstrated a significant enhancement in targeting macrophages. Specifically, delivery of siRNA targeting TAK1, a critical kinase upstream of multiple inflammatory pathways, effectively suppressed the phosphorylation/activation of NF-kB. LNP-mediated inhibition of NF-kB, a key upstream regulator in the classic inflammatory signaling pathway, in the murine macrophage cell line RAW264.7 significantly reduced the release of proinflammatory cytokines after stimulation with the viral RNA mimic Poly(I:C). Finally, intranasal administration of MacLNP-encapsulated TAK1 siRNA markedly ameliorated lung injury induced by influenza infection. In conclusion, our findings validate the potential of targeted macrophage interventions in attenuating inflammatory responses, reinforcing the potential of LNP-mediated macrophage targeting to treat pulmonary inflammatory disorders.


Assuntos
Lipossomos , Nanopartículas , Pneumonia Viral , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Lipídeos/farmacologia , Macrófagos/metabolismo , RNA Interferente Pequeno/metabolismo , Citocinas/metabolismo , Pneumonia Viral/metabolismo
8.
Nat Commun ; 15(1): 1884, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424061

RESUMO

Lipid nanoparticles for delivering mRNA therapeutics hold immense promise for the treatment of a wide range of lung-associated diseases. However, the lack of effective methodologies capable of identifying the pulmonary delivery profile of chemically distinct lipid libraries poses a significant obstacle to the advancement of mRNA therapeutics. Here we report the implementation of a barcoded high-throughput screening system as a means to identify the lung-targeting efficacy of cationic, degradable lipid-like materials. We combinatorially synthesize 180 cationic, degradable lipids which are initially screened in vitro. We then use barcoding technology to quantify how the selected 96 distinct lipid nanoparticles deliver DNA barcodes in vivo. The top-performing nanoparticle formulation delivering Cas9-based genetic editors exhibits therapeutic potential for antiangiogenic cancer therapy within a lung tumor model in female mice. These data demonstrate that employing high-throughput barcoding technology as a screening tool for identifying nanoparticles with lung tropism holds potential for the development of next-generation extrahepatic delivery platforms.


Assuntos
DNA , Nanopartículas , Feminino , Animais , Camundongos , RNA Mensageiro/genética , Pulmão , Lipídeos
9.
Sci Transl Med ; 16(732): eadg6229, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38295183

RESUMO

Disruption of pulmonary vascular homeostasis is a central feature of viral pneumonia, wherein endothelial cell (EC) death and subsequent angiogenic responses are critical determinants of the outcome of severe lung injury. A more granular understanding of the fundamental mechanisms driving reconstitution of lung endothelium is necessary to facilitate therapeutic vascular repair. Here, we demonstrated that TGF-ß signaling through TGF-ßR2 (transforming growth factor-ß receptor 2) is activated in pulmonary ECs upon influenza infection, and mice deficient in endothelial Tgfbr2 exhibited prolonged injury and diminished vascular repair. Loss of endothelial Tgfbr2 prevented autocrine Vegfa (vascular endothelial growth factor α) expression, reduced endothelial proliferation, and impaired renewal of aerocytes thought to be critical for alveolar gas exchange. Angiogenic responses through TGF-ßR2 were attributable to leucine-rich α-2-glycoprotein 1, a proangiogenic factor that counterbalances canonical angiostatic TGF-ß signaling. Further, we developed a lipid nanoparticle that targets the pulmonary endothelium, Lung-LNP (LuLNP). Delivery of Vegfa mRNA, a critical TGF-ßR2 downstream effector, by LuLNPs improved the impaired regeneration phenotype of EC Tgfbr2 deficiency during influenza injury. These studies defined a role for TGF-ßR2 in lung endothelial repair and demonstrated efficacy of an efficient and safe endothelial-targeted LNP capable of delivering therapeutic mRNA cargo for vascular repair in influenza infection.


Assuntos
Influenza Humana , Humanos , Camundongos , Animais , Receptor do Fator de Crescimento Transformador beta Tipo II , Fator A de Crescimento do Endotélio Vascular , Pulmão/metabolismo , Fator de Crescimento Transformador beta/metabolismo , RNA Mensageiro
10.
Neural Regen Res ; 19(9): 2027-2035, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227532

RESUMO

JOURNAL/nrgr/04.03/01300535-202409000-00035/figure1/v/2024-01-16T170235Z/r/image-tiff Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy, neurosensory impairments, and cognitive deficits, and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy. The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored. However, the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated. In this study, we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function. Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats. Following transplantation of human placental chorionic plate-derived mesenchymal stem cells, interleukin-3 expression was downregulated. To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy, we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA. We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown. Furthermore, interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy. The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy, and this effect was mediated by interleukin-3-dependent neurological function.

11.
Small ; 20(11): e2304378, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072809

RESUMO

With six therapies approved by the Food and Drug Association, chimeric antigen receptor (CAR) T cells have reshaped cancer immunotherapy. However, these therapies rely on ex vivo viral transduction to induce permanent CAR expression in T cells, which contributes to high production costs and long-term side effects. Thus, this work aims to develop an in vivo CAR T cell engineering platform to streamline production while using mRNA to induce transient, tunable CAR expression. Specifically, an ionizable lipid nanoparticle (LNP) is utilized as these platforms have demonstrated clinical success in nucleic acid delivery. Though LNPs often accumulate in the liver, the LNP platform used here achieves extrahepatic transfection with enhanced delivery to the spleen, and it is further modified via antibody conjugation (Ab-LNPs) to target pan-T cell markers. The in vivo evaluation of these Ab-LNPs confirms that targeting is necessary for potent T cell transfection. When using these Ab-LNPs for the delivery of CAR mRNA, antibody and dose-dependent CAR expression and cytokine release are observed along with B cell depletion of up to 90%. In all, this work conjugates antibodies to LNPs with extrahepatic tropism, evaluates pan-T cell markers, and develops Ab-LNPs capable of generating functional CAR T cells in vivo.


Assuntos
Nanopartículas , Receptores de Antígenos Quiméricos , Receptores de Antígenos Quiméricos/genética , Lipossomos , Transfecção , Anticorpos , Engenharia Celular , RNA Interferente Pequeno
12.
Cell Mol Bioeng ; 16(4): 383-392, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37810998

RESUMO

Introduction: Multiple myeloma (MM) is a hematological blood cancer of the bone marrow that remains largely incurable, in part due to its physical interactions with the bone marrow microenvironment. Such interactions enhance the homing, proliferation, and drug resistance of MM cells. Specifically, adhesion receptors and homing factors, E-selectin (ES) and cyclophilin A (CyPA), respectively, expressed by bone marrow endothelial cells enhance MM colonization and dissemination. Thus, silencing of ES and CyPA presents a potential therapeutic strategy to evade MM spreading. However, small molecule inhibition of ES and CyPA expressed by bone marrow endothelial cells remains challenging, and blocking antibodies induce further MM propagation. Therefore, ES and CyPA are promising candidates for inhibition via RNA interference (RNAi). Methods: Here, we utilized a previously developed lipid-polymer nanoparticle for RNAi therapy, that delivers siRNA to the bone marrow perivascular niche. We utilized our platform to co-deliver ES and CyPA siRNAs to prevent MM dissemination in vivo. Results: Lipid-polymer nanoparticles effectively downregulated ES expression in vitro, which decreased MM cell adhesion and migration through endothelial monolayers. Additionally, in vivo delivery of lipid-polymer nanoparticles co-encapsulating ES and CyPA siRNA extended survival in a xenograft mouse model of MM, either alone or in combination with the proteasome inhibitor bortezomib. Conclusions: Our combination siRNA lipid-polymer nanoparticle therapy presents a vascular microenvironment-targeting strategy as a potential paradigm shift for MM therapies, which could be extended to other cancers that colonize the bone marrow. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-023-00774-y.

13.
Nat Mater ; 22(12): 1571-1580, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696939

RESUMO

Chimeric antigen receptor T (CAR T) cell immunotherapy is successful at treating many cancers. However, it often induces life-threatening cytokine release syndrome (CRS) and neurotoxicity. Here, we show that in situ conjugation of polyethylene glycol (PEG) to the surface of CAR T cells ('PEGylation') creates a polymeric spacer that blocks cell-to-cell interactions between CAR T cells, tumour cells and monocytes. Such blockage hinders intensive tumour lysing and monocyte activation by CAR T cells and, consequently, decreases the secretion of toxic cytokines and alleviates CRS-related symptoms. Over time, the slow expansion of CAR T cells decreases PEG surface density and restores CAR T cell-tumour-cell interactions to induce potent tumour killing. This occurs before the restoration of CAR T cell-monocyte interactions, opening a therapeutic window for tumour killing by CAR T cells before monocyte overactivation. Lethal neurotoxicity is also lower when compared with treatment with the therapeutic antibody tocilizumab, demonstrating that in situ PEGylation of CAR T cells provides a materials-based strategy for safer cellular immunotherapy.


Assuntos
Neoplasias , Síndromes Neurotóxicas , Receptores de Antígenos Quiméricos , Humanos , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/uso terapêutico , Imunoterapia Adotiva , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo , Linfócitos T
14.
Proc Natl Acad Sci U S A ; 120(25): e2215711120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37310997

RESUMO

Multiple myeloma (MM), a hematologic malignancy that preferentially colonizes the bone marrow, remains incurable with a survival rate of 3 to 6 mo for those with advanced disease despite great efforts to develop effective therapies. Thus, there is an urgent clinical need for innovative and more effective MM therapeutics. Insights suggest that endothelial cells within the bone marrow microenvironment play a critical role. Specifically, cyclophilin A (CyPA), a homing factor secreted by bone marrow endothelial cells (BMECs), is critical to MM homing, progression, survival, and chemotherapeutic resistance. Thus, inhibition of CyPA provides a potential strategy to simultaneously inhibit MM progression and sensitize MM to chemotherapeutics, improving therapeutic response. However, inhibiting factors from the bone marrow endothelium remains challenging due to delivery barriers. Here, we utilize both RNA interference (RNAi) and lipid-polymer nanoparticles to engineer a potential MM therapy, which targets CyPA within blood vessels of the bone marrow. We used combinatorial chemistry and high-throughput in vivo screening methods to engineer a nanoparticle platform for small interfering RNA (siRNA) delivery to bone marrow endothelium. We demonstrate that our strategy inhibits CyPA in BMECs, preventing MM cell extravasation in vitro. Finally, we show that siRNA-based silencing of CyPA in a murine xenograft model of MM, either alone or in combination with the Food and Drug Administration (FDA)-approved MM therapeutic bortezomib, reduces tumor burden and extends survival. This nanoparticle platform may provide a broadly enabling technology to deliver nucleic acid therapeutics to other malignancies that home to bone marrow.


Assuntos
Mieloma Múltiplo , Estados Unidos , Humanos , Animais , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Medula Óssea , RNA Interferente Pequeno/genética , Células Endoteliais , Ciclofilina A , Lipídeos , Microambiente Tumoral
15.
Acta Pharm Sin B ; 13(4): 1429-1437, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37139433

RESUMO

Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy via conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts' lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies.

16.
Neural Plast ; 2022: 3995227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406589

RESUMO

Voltage-gated sodium channel beta 2 (Nav2.2 or Navß2, coded by SCN2B mRNA), a gene involved in maintaining normal physiological functions of the prefrontal cortex and hippocampus, might be associated with prefrontal cortex aging and memory decline. This study investigated the effects of Navß2 in amyloid-ß 1-42- (Aß1-42-) induced neural injury model and the potential underlying molecular mechanism. The results showed that Navß2 knockdown restored neuronal viability of Aß1-42-induced injury in neurons; increased the contents of brain-derived neurotrophic factor (BDNF), enzyme neprilysin (NEP) protein, and NEP enzyme activity; and effectively altered the proportions of the amyloid precursor protein (APP) metabolites including Aß42, sAPPα, and sAPPß, thus ameliorating cognitive dysfunction. This may be achieved through regulating NEP transcription and APP metabolism, accelerating Aß degradation, alleviating neuronal impairment, and regulating BDNF-related signal pathways to repair neuronal synaptic efficiency. This study provides novel evidence indicating that Navß2 plays crucial roles in the repair of neuronal injury induced by Aß1-42 both in vivo and in vitro.


Assuntos
Disfunção Cognitiva , Canais de Sódio Disparados por Voltagem , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neurônios/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Neprilisina/genética , Neprilisina/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo
17.
Acta Cir Bras ; 37(6): e370603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36134852

RESUMO

PURPOSE: To explore the neuroprotective effects of Lutongkeli (LTKL) in traumatic brain injury (TBI) and detect the related mechanism. METHODS: TBI model was established with LTKL administration (2 and 4 g/kg/d, p.o.). Motor function of rats was examined by Rotarod test. Nissl staining was used to show neuron morphology. Furthermore, the disease-medicine common targets were obtained with the network pharmacology and analyzed with Kyoto Encyclopedia of Genes and Genomes. Lastly, the predicted targets were validated by real-time polymerase chain reaction. RESULTS: After LTKL administration, neural behavior was significantly improved, and the number of spared neurons in brain was largely increased. Moreover, 68 bioactive compounds were identified, corresponding to 148 LTKL targets; 2,855 genes were closely associated with TBI, of which 87 overlapped with the LTKL targets and were considered to be therapeutically relevant. Functional enrichment analysis suggested LTKL exerted its pharmacological effects in TBI by modulating multiple pathways including apoptosis, inflammation, etc. Lastly, we found LTKL administration could increase the mRNA level of Bcl-2 and decrease the expression of Bax and caspase-3. CONCLUSIONS: This study reported the neuroprotective effect of LTKL against TBI is accompanied with anti-apoptosis mechanism, which provides a scientific explanation for the clinical application of LTKL in the treatment of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Caspase 3 , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2 , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Proteína X Associada a bcl-2
18.
J Am Chem Soc ; 144(22): 9926-9937, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616998

RESUMO

The development of lipid nanoparticle (LNP) formulations for targeting the bone microenvironment holds significant potential for nucleic acid therapeutic applications including bone regeneration, cancer, and hematopoietic stem cell therapies. However, therapeutic delivery to bone remains a significant challenge due to several biological barriers, such as low blood flow in bone, blood-bone marrow barriers, and low affinity between drugs and bone minerals, which leads to unfavorable therapeutic dosages in the bone microenvironment. Here, we construct a series of bisphosphonate (BP) lipid-like materials possessing a high affinity for bone minerals, as a means to overcome biological barriers to deliver mRNA therapeutics efficiently to the bone microenvironment in vivo. Following in vitro screening of BP lipid-like materials formulated into LNPs, we identified a lead BP-LNP formulation, 490BP-C14, with enhanced mRNA expression and localization in the bone microenvironment of mice in vivo compared to 490-C14 LNPs in the absence of BPs. Moreover, BP-LNPs enhanced mRNA delivery and secretion of therapeutic bone morphogenetic protein-2 from the bone microenvironment upon intravenous administration. These results demonstrate the potential of BP-LNPs for delivery to the bone microenvironment, which could potentially be utilized for a range of mRNA therapeutic applications including regenerative medicine, protein replacement, and gene editing therapies.


Assuntos
Lipídeos , Nanopartículas , Animais , Difosfonatos/farmacologia , Lipossomos , Camundongos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
19.
J Biomed Mater Res A ; 110(5): 1101-1108, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35076171

RESUMO

Lipid nanoparticles (LNPs) play a crucial role in delivering messenger RNA (mRNA) therapeutics for clinical applications, including COVID-19 mRNA vaccines. While mRNA can be chemically modified to become immune-silent and increase protein expression, LNPs can still trigger innate immune responses and cause inflammation-related adverse effects. Inflammation can in turn suppress mRNA translation and reduce the therapeutic effect. Dexamethasone (Dex) is a widely used anti-inflammatory corticosteroid medication that is structurally similar to cholesterol, a key component of LNPs. Here, we developed LNP formulations with anti-inflammatory properties by partially substituting cholesterol with Dex as a means to reduce inflammation. We demonstrated that Dex-incorporated LNPs effectively abrogated the induction of tumor necrosis factor alpha (TNF-ɑ) in vitro and significantly reduced its expression in vivo. Reduction of inflammation using this strategy improved in vivo mRNA expression in mice by 1.5-fold. Thus, we envision that our Dex-incorporated LNPs could potentially be used to broadly to reduce the inflammatory responses of LNPs and enhance protein expression of a range of mRNA therapeutics.


Assuntos
COVID-19 , Nanopartículas , Animais , Anti-Inflamatórios/farmacologia , Lipossomos , Camundongos , Nanopartículas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Ibrain ; 8(1): 3-14, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37786419

RESUMO

Alzheimer's disease (AD) is a degenerative brain disease with complex clinical manifestations and pathogeneses such as abnormal deposition of beta-amyloid protein and inflammation caused by the excessive activation of microglia. CXC motif chemokine receptor type 4 (CXCR4) is a type of G protein-coupled receptor that binds to CXC motif ligand 12 (CXCL12) to activate downstream signaling pathways, such as the Janus kinase/signal transducer and activator of transcription and the renin-angiotensin system (Ras)/RAF proto-oncogene serine (Raf)/mitogen-activated protein kinase/extracellular-regulated protein kinase; most of these signaling pathways are involved in inflammatory responses. CXCR4 is highly expressed in the microglia and astrocytes; this might be one of the important causes of inflammation caused by microglia and astrocytes. In this review, we summarize the mechanism and therapeutics of AD, the structures of CXCR4 and the CXCL12 ligand, and the mechanisms of CXCR4/CXCL12 that are involved in the occurrence and development of AD. The possible treatment of AD through microglia and astrocytes is also discussed, with the aim of providing a new method for the treatment of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA