Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(21): 8365-8372, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38717986

RESUMO

Simultaneous sensitive and precise determination of multibiomarkers is of great significance for improving detection efficiency, reducing diagnosis and treatment expenses, and elevating survival rates. However, the development of simple and portable biosensors for simultaneous determination of multiplexed targets in biological fluids still faces challenges. Herein, a unique and versatile immobilization-free dual-target electrochemical biosensing platform, which combines distinguishable magnetic signal reporters with buoyancy-magnetism separation, was designed and constructed for simultaneous detection of carcinoembryonic (CEA) and α-fetoprotein (AFP) in intricate biological fluids. To construct such distinguishable magnetic signal reporters with signal transduction, amplification, and output, secondary antibodies of CEA and AFP were respectively functionalized on methylene blue (MB) and 6-(ferrocenyl)hexanethiol (FeC) modified Fe3O4@Au magnetic nanocomposites. Meanwhile, a multifunctional flotation probe with dual target recognition, capture, and isolation capability was prepared by conjugating primary antibodies (Ab1-CEA, Ab1-AFP) to hollow buoyant microspheres. The target antigens of CEA and AFP can trigger a flotation-mediated sandwich-type immunoreaction and capture a certain amount of the distinguishable magnetic signal reporter, which enables the conversion of the target CEA and AFP quantities to the signal of the potential-resolved MB and FeC. Thus, the MB and FeC currents of magnetically adsorbed distinguishable magnetic reporters can be used to determine the CEA and AFP targets simultaneously and precisely. Accordingly, the proposed strategy exhibited a delightful linear response for CEA and AFP in the range of 100 fg·mL-1-100 ng·mL-1 with detection limits of 33.34 and 17.02 fg·mL-1 (S/N = 3), respectively. Meanwhile, no significant nonspecific adsorption and cross-talk were observed. The biosensing platform has shown satisfactory performance in the determination of real clinical samples. More importantly, the proposed approach can be conveniently extended to universal detection just by simply substituting biorecognition events. Thus, this work opens up a new promising perspective for dual and even multiple targets and offers promising potential applications in clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Antígeno Carcinoembrionário , Técnicas Eletroquímicas , alfa-Fetoproteínas , alfa-Fetoproteínas/análise , alfa-Fetoproteínas/imunologia , Antígeno Carcinoembrionário/análise , Antígeno Carcinoembrionário/imunologia , Técnicas Biossensoriais/métodos , Humanos , Imunoensaio/métodos , Ouro/química , Limite de Detecção
2.
Talanta ; 274: 126023, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583328

RESUMO

Dual-potential ratiometric electrochemiluminescence (ECL) is in favor of resistance to environmental interference. However, two kinds of emitters or coreactants, and a wide scan potential range (>2 V) are mandatory. This work developed a new dual-potential ratiometric ECL sensor for detection of carcinoembryonic antigen (CEA) using single emitter (luminol) and single coreactant (H2O2) with a mild potential range from -0.1 to 0.6 V. Luminol could produce a strong cathodic ECL (Ec) induced by hydroxyl radicals (HO‧) from the reduction of H2O2, and a relatively weak anodic ECL (Ea). After the ferrocene modified CEA aptamer (Apt-Fc) was attached, Fc could promote Ea by catalyzing the oxidation of H2O2, and reduce Ec by consuming HO‧. With the cycling amplification of the exonuclease I, CEA could substantially reduce the amount of Apt-Fc, resulting in the decrease of Ea and the rise of Ec. So, the ratio of Ec to Ea (Ec/Ea) was used as the detection signal, realizing the sensitive determination of CEA from 0.1 pg mL-1 to 10 ng mL-1 with a LOD of 41.85 fg mL-1 (S/N = 3). The developed sensor demonstrated excellent specificity, stability and reproducibility, with satisfactory results in practical detection.


Assuntos
Aptâmeros de Nucleotídeos , Antígeno Carcinoembrionário , Técnicas Eletroquímicas , Peróxido de Hidrogênio , Medições Luminescentes , Luminol , Antígeno Carcinoembrionário/análise , Antígeno Carcinoembrionário/sangue , Técnicas Eletroquímicas/métodos , Humanos , Medições Luminescentes/métodos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Luminol/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Técnicas Biossensoriais/métodos , Metalocenos/química , Compostos Ferrosos/química
3.
Anal Chem ; 95(18): 7336-7343, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37129510

RESUMO

Rapid and accurate detection of biomolecules is of vital importance for the diagnosis of disease and for performing timely treatments. The point-of-care analysis of cancer biomarkers in the blood with low cost and easy processing is still challenging. Herein, an advanced and robust strategy, which integrates the buoyant recognition probe with the magnetic reporter probe in one solution, was first proposed for immobilization-free electrochemical immunosensing. The tumor marker of alpha fetoprotein (AFP) can be captured immune-buoyantly, and then a multifunctional magnetic reporter probe in pseudo-homogeneous solution was further captured to fulfill a sandwich-type immunoreaction. The residual magnetic reporter probe can be firmly and efficiently attracted on a magnetic glassy carbon electrode to fulfill the conversion of the target AFP amount into the residual magnetic electrochemical signal indicator. As a result, the electrochemical signal of methylene blue can accurately reflect the original level of target antigen AFP concentration. By integrating buoyancy-driven quasi-homogenous biorecognition with magnetism-mediated amplification and signal output, the proposed immobilization-free electrochemical immunosensing strategy displayed a wide range of linear response (100 fg mL-1 to 10 ng mL-1), low detection limit (14.52 fg mL-1), and good reproducibility, selectivity, and stability. The designed strategy manifests remarkable advantages including assay simplicity, rapidness, and high sensitivity owing to the in-solution instead of on-electrode biorecognition that could accelerate and improve the biorecognition efficiency. To the best of our knowledge, this is the first cooperation of buoyancy-driven biorecognition with magnetism-mediated signal output in bioanalysis, which would be attractive for rapid clinic biomedical application. Thus, this work provides a fresh perspective for convenient and favorable immobilization-free electrochemical biosensing of universal biomolecules.


Assuntos
Técnicas Biossensoriais , alfa-Fetoproteínas , alfa-Fetoproteínas/análise , Técnicas Eletroquímicas , Reprodutibilidade dos Testes , Biomarcadores Tumorais/análise , Limite de Detecção , Imunoensaio , Ouro/química
4.
Anal Chem ; 94(37): 12845-12851, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36067524

RESUMO

Ratiometric electrochemiluminescence (ECL) sensors can efficiently remove environmental interference to attain precise detection. Nonetheless, two eligible luminophores or coreactants were usually needed, increasing the complexity and restricting their practical application. In this study, a single luminophore of luminol with a single coreactant of H2O2 was employed to construct a dual-potential ratiometric ECL sensor for the detection of carcinoembryonic antigen (CEA). The produced palladium nanoclusters (Pd NCs) employing a DNA duplex as a template could not only stimulate luminol to produce cathodic ECL (Icathodic) but also quench its anodic ECL (Ianodic). During the detection process, CEA could damage the double-stranded structure and reduce the Pd NCs' amount, triggering a significant decrease in the ratio of Icathodic to Ianodic (Icathodic/Ianodic) and thereby achieving sensitive CEA's detection. Furthermore, the Icathodic/Ianodic was independent of the H2O2 concentration, which avoided a prejudicial effect from H2O2 decomposition and considerably enhanced the detection's reliability. The developed ratiometric ECL sensor demonstrated a sensitive detection toward CEA with a wide linear range from 100 ag/mL to 10 ng/mL and a detection limit of 87.1 ag/mL (S/N = 3). In conclusion, this study offers a new idea for constructing ratiometric ECL sensors based on a single luminophore and technical support for cancer's early diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Antígeno Carcinoembrionário , DNA/química , Técnicas Eletroquímicas , Peróxido de Hidrogênio , Limite de Detecção , Medições Luminescentes , Luminol/química , Nanopartículas Metálicas/química , Paládio/química , Reprodutibilidade dos Testes
5.
Food Chem ; 368: 130864, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34438172

RESUMO

Ultra-high pressure (UHP) is a novel non-thermal pretreatment method in food processing for improving the extraction yield of polyphenols and functional properties. The present work investigated the phenolic profiles, antioxidant activities, and cytoprotective effects of the free, esterified, and insoluble-bound phenolic fractions from mango leaves before and after ultra-high pressure (UHP) treatment. UHPLC-Q-Orbitrap-MS/MS analysis resulted in the identification of 42 phenolic compounds in the different phenolic forms. UHP pretreatment could significantly influence the contents of total phenols, total flavonoids and individual compounds in the different phenolic fractions (p < 0.05). After UHP pretreatment, these phenolic fractions exhibited greater antioxidant activity, and inhibited reactive oxygen species production and cell apoptosis (p < 0.05). Meanwhile, IBP were the most potential antioxidative and cytoprotective ingredients. Therefore, UHP pretreated mango leaves with enhanced bioactivity could be used as biological agents in the health food industry to improve its application and economic values.


Assuntos
Antioxidantes , Mangifera , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Fenóis/análise , Extratos Vegetais/farmacologia , Folhas de Planta/química , Espectrometria de Massas em Tandem
6.
Mikrochim Acta ; 189(1): 17, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873664

RESUMO

As well known, the electrochemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)32+) heavily relies on highly positive or negative triggered voltage, prejudicing the detection toward the bio-molecules. In this work, Ru(bpy)32+ could generate enhanced and stable ECL at a low potential of 0.05 V (vs. Ag/AgCl) on graphene-PtPd hybrid, attributing to its excellent electrocatalysis from the synergistic effect between Pt and Pd. The obtained low-potential-driven ECL could be quenched by MoS2 nanoflowers. Based on the quenching effect, a sandwich "signal-off" ECL immunosensor was fabricated to sensitively detect carcinoembryonic antigen (CEA). A linear calibration curve from 1 fg mL-1 to 1 ng mL-1 was obtained along with a low detection limit of 0.54 fg mL-1 (S/N = 3) under optimal conditions. The sensor showed satisfactory specificity, stability, and reproducibility and was successfully applied to determine CEA in actual samples. The recoveries ranged from 98.80 to 100.23%, and the relative standard deviation (RSD) was lower than 5%. Above all, this work explored new materials in low-potential-driven ECL system and provided a reliable sensing strategy for clinical applications.


Assuntos
Antígeno Carcinoembrionário/sangue , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Substâncias Luminescentes/química , Nanocompostos/química , Compostos Organometálicos/química , Anticorpos Imobilizados/imunologia , Antígeno Carcinoembrionário/imunologia , Dissulfetos/química , Grafite/química , Humanos , Limite de Detecção , Molibdênio/química , Paládio/química , Platina/química , Reprodutibilidade dos Testes
7.
Biosens Bioelectron ; 122: 224-230, 2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30265973

RESUMO

A versatile label-free electrochemical biosensor based on dual enzyme assisted multiple amplification strategy was developed for ultrasensitive detection of circulating tumor DNA (ctDNA). The biosensor consists of a triple-helix molecular switch (THMS) as molecular recognition and signal transduction probe, ribonuclease HII (RNase HII) and terminal deoxynucleotidyl transferase (TdT) as dual enzyme assisted multiple amplification accelerator. The presence of target ctDNA could open THMS and trigger RNase HII-assisted homogenous target recycling amplification to produce substantial signal transduction probe (STP). The released STP hybridized with the capture probe immobilized on a gold electrode, then TdT and assistant probe were further employed to fulfill TdT-mediated cascade extension and generate stable DNA dendritic nanostructures. The electroactive methyl blue (MB) was finally used as the signal reporter to realize the multiple electrochemical amplification ctDNA detection as the amount of MB is positively correlated with the target ctDNA. Combined with the efficient recognition capacity of the designed THMS and the excellent multiple amplification ability of RNase HII and TdT, the constructed sensing platform could detect KRAS G12DM with a wide detection range from 0.01 fM to 1 pM, and the limit of detection as low as 2.4 aM. Besides, the platform is capable of detecting ctDNA in biological fluid such as plasma. More importantly, by substituting the loop of THMS with different sequences, this strategy could be conveniently expanded into the detection of other ctDNA, showing promising potential applications in clinical cancer screening and prognosis.


Assuntos
Técnicas Biossensoriais/métodos , DNA Tumoral Circulante/sangue , Neoplasias/sangue , DNA Nucleotidilexotransferase/química , Técnicas Eletroquímicas/métodos , Humanos , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/métodos , Hibridização de Ácido Nucleico/métodos , Ribonuclease H/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA