Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 103(16): e37796, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640283

RESUMO

BACKGROUND: Asthma ranks among the most prevalent non-communicable diseases worldwide. Previous studies have elucidated the significant role of the immune system in its pathophysiology. Nevertheless, the immune-related mechanisms underlying asthma are complex and still inadequately understood. Thus, our objective was to investigate novel key biomarkers and immune infiltration characteristics associated with asthma by employing integrated bioinformatics tools. METHODS: In this study, we conducted a weighted gene co-expression network analysis (WGCNA) to identify key modules and genes potentially implicated in asthma. Functional annotation of these key modules and genes was carried out through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Additionally, we constructed a protein-protein interaction (PPI) network using the STRING database to identify 10 hub genes. Furthermore, we evaluated the relative proportion of immune cells in bronchial epithelial cell samples from 20 healthy individuals and 88 asthmatic patients using CIBERSORT. Finally, we validated the hub genes and explored their correlation with immune infiltration. RESULTS: Furthermore, 20 gene expression modules and 10 hub genes were identified herein. Among them, complement component 3 (C3), prostaglandin I2 receptor (PTGIR), parathyroid hormone-like hormone (PTHLH), and C-X3-C motif chemokine ligand 1 (CX3CL1) were closely correlated with the infiltration of immune cells. They may be novel candidate biomarkers or therapeutic targets for asthma. Furthermore, B cells memory, and plasma cells might play an important role in immune cell infiltration after asthma. CONCLUSIONS: C3, PTGIR, CX3CL1, and PTHLH have important clinical diagnostic values and are correlated with infiltration of multiple immune cell types in asthma. These hub genes, B cells memory, and plasma cells may become important biological targets for therapeutic asthma drug screening and drug design.


Assuntos
Asma , Células Epiteliais , Humanos , Asma/genética , Biomarcadores , Biologia Computacional , Bases de Dados Factuais , Redes Reguladoras de Genes
2.
Med Sci Monit ; 25: 8095-8104, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31659146

RESUMO

BACKGROUND Patients with advanced non-small cell lung cancer (NSCLC) treated with cisplatin, also termed cis-diamminedichloroplatinum (CDDP) or diamminedichloroplatinum (DDP), may develop chemoresistance. This study aimed to investigate the role of long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) and multidrug resistance-1 (MDR1) in tumor tissue samples and the chemoresistant human NSCLC cell lines, H460/DDP and A549/DDP, and in a murine A549/DDP tumor xenograft. MATERIAL AND METHODS Tissue samples were from patients with NSCLC who responded cisplatin (DDP-sensitive) (n=24), patients with NSCLC unresponsive to cisplatin (DDP-resistant) (n=30), and normal lung tissue (n=25). In H460/DDP and A549/DDP cells, expression of XIST, microRNA (miR)-144-3p, MDR1, and multidrug resistance-associated protein 1 (MRP1) were detected by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. The MTT assay measured cell survival and proliferation, a transwell assay evaluated cell migration, and flow cytometry measured apoptosis. Luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays examined the relationship between XIST and miR-144-3p. Tumor xenografts from A549/DDP cells were studied in BALB/c nude mice. RESULTS In tissue from patients with DDP-resistant NSCLC and the mouse A549/DDP tumor xenograft, lncRNA-XIST expression was upregulated and miR-144-3p expression was inhibited. In A549/DDP and H460/DDP cells, down-regulation of lncRNA-XIST and upregulation of miR-144-3p reduced cell survival, proliferation, migration, induced apoptosis and suppressed MDR1 and MRP1 expression. CONCLUSIONS Upregulation of lncRNA-XIST was associated with cisplatin resistance in NSCLC by downregulating miRNA-144-3p in H460/DDP and A549/DDP cells, a murine A549/DDP tumor xenograft, and human tumor tissues from patients with cisplatin-resistant NSCLC.


Assuntos
Cisplatino/farmacologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Células A549 , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose/fisiologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , RNA Longo não Codificante/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA