Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microvasc Res ; 153: 104658, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38266910

RESUMO

Endothelial permeability deterioration is involved in ventilator-induced lung injury (VILI). The integrality of vascular endothelial glycocalyx (EG) is closely associated with endothelial permeability. The hypothesis was that vascular EG shedding participates in VILI through promoting endothelial permeability. In the present study, male Sprague-Dawley (SD) rats were ventilated with high tidal volume (VT =40 ml/kg) or low tidal volume (VT =8 ml/kg) to investigate the effects of different tidal volume and ventilation durations on EG in vivo. We report disruption of EG during the period of high tidal volume ventilation characterized by increased glycocalyx structural components (such as syndecan-1, heparan sulfate, hyaluronan) in the plasma and decreased the expression of syndecan-1 in the lung tissues. Mechanistically, the disruption of EG was associated with increased proinflammatory cytokines and matrix metalloproteinase in the lung tissues. Collectively, these results demonstrate that the degradation of EG is involved in the occurrence and development of VILI in rats, and the inflammatory mechanism mediated by activation of the NF-κB signaling pathway may be partly responsible for the degradation of EG in VILI in rats. This study enhances our understanding of the pathophysiological processes underlying VILI, shedding light on potential therapeutic targets to mitigate VILI.


Assuntos
Sindecana-1 , Lesão Pulmonar Induzida por Ventilação Mecânica , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Glicocálix/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Pulmão/metabolismo
2.
World J Surg Oncol ; 21(1): 297, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723513

RESUMO

BACKGROUND: An understanding of the impact of goal-directed fluid therapy (GDFT) on the outcomes of patients undergoing one-lung ventilation (OLV) for thoracic surgery remains incomplete and controversial. This meta-analysis aimed to assess the effect of GDFT compared to other fluid therapy strategies on the incidence of postoperative complications in patients with OLV. METHODS: The Embase, Cochrane Library, Web of Science, and MEDLINE via PubMed databases were searched from their inception to November 30, 2022. Forest plots were constructed to present the results of the meta-analysis. The quality of the included studies was evaluated using the Cochrane Collaboration tool and Risk Of Bias In Non-Randomized Study of Interventions (ROBINS-I). The primary outcome was the incidence of postoperative complications. Secondary outcomes were the length of hospital stay, PaO2/FiO2 ratio, total fluid infusion, inflammatory factors (TNF-α, IL-6), and postoperative bowel function recovery time. RESULTS: A total of 1318 patients from 11 studies were included in this review. The GDFT group had a lower incidence of postoperative complications [odds ratio (OR), 0.47; 95% confidence interval (95% CI), 0.29-0.75; P = 0.002; I 2, 67%], postoperative pulmonary complications (OR 0.48, 95% CI 0.27-0.83; P = 0.009), and postoperative anastomotic leakage (OR 0.51, 95% CI 0.27-0.97; P = 0.04). The GDFT strategy reduces total fluid infusion. CONCLUSIONS: GDFT is associated with lower postoperative complications and better survival outcomes after thoracic surgery for OLV.


Assuntos
Ventilação Monopulmonar , Cirurgia Torácica , Humanos , Ventilação Monopulmonar/efeitos adversos , Objetivos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Hidratação/efeitos adversos
3.
Front Surg ; 9: 914984, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722525

RESUMO

Background: Hypoxemia and fluctuations in respiratory mechanics parameters are common during one-lung ventilation (OLV) in thoracic surgery. Additionally, the incidence of postoperative pulmonary complications (PPCS) in thoracic surgery is higher than that in other surgeries. Previous studies have demonstrated that driving pressure-oriented ventilation can reduce both mortality in patients with acute respiratory distress syndrome (ARDS) and the incidence of PPCS in patients undergoing general anesthesia. Our aim was to determine whether driving pressure-oriented ventilation improves intraoperative physiology and outcomes in patients undergoing thoracic surgery. Methods: We searched MEDLINE via PubMed, Embase, Cochrane, Web of Science, and ClinicalTrials.gov and performed a meta-analysis to compare the effects of driving pressure-oriented ventilation with other ventilation strategies on patients undergoing OLV. The primary outcome was the PaO2/FiO2 ratio (P/F ratio) during OLV. The secondary outcomes were the incidence of PPCS during follow-up, compliance of the respiratory system during OLV, and mean arterial pressure during OLV. Results: This review included seven studies, with a total of 640 patients. The PaO2/FiO2 ratio was higher during OLV in the driving pressure-oriented ventilation group (mean difference [MD]: 44.96; 95% confidence interval [CI], 24.22-65.70.32; I 2: 58%; P < 0.0001). The incidence of PPCS was lower (OR: 0.58; 95% CI, 0.34-0.99; I 2: 0%; P = 0.04) and the compliance of the respiratory system was higher (MD: 6.15; 95% CI, 3.97-8.32; I 2: 57%; P < 0.00001) in the driving pressure-oriented group during OLV. We did not find a significant difference in the mean arterial pressure between the two groups. Conclusion: Driving pressure-oriented ventilation during OLV in patients undergoing thoracic surgery was associated with better perioperative oxygenation, fewer PPCS, and improved compliance of the respiratory system. Systematic Review Registration: PROSPERO, identifier: CRD42021297063.

4.
J Biomed Nanotechnol ; 17(10): 1891-1916, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34706792

RESUMO

With increasing knowledge about diseases at the histological, cytological to sub-organelle level, targeting organelle therapy has gradually been envisioned as an approach to overcome the shortcomings of poor specificity and multiple toxic side effects on tissues and cell-level treatments using the currently available therapy. Organelle carbon dots (CDs) are a class of functionalized CDs that can target organelles. CDs can be prepared by a "synchronous in situ synthesis method" and "asynchronous modification method." The superior optical properties and good biocompatibility of CDs can be preserved, and they can be used as targeting particles to carry drugs into cells while reducing leakage during transport. Given the excellent organelle fluorescence imaging properties, targeting organelle CDs can be used to monitor the physiological metabolism of organelles and progression of human diseases, which will provide advanced understanding and accurate diagnosis and targeted treatment of cancers. This study reviews the methods used for preparation of targeting organelle CDs, mechanisms of accurate diagnosis and targeted treatment of cancer, as well as their application in the area of cancer diagnosis and treatment research. Finally, the current difficulties and prospects for targeting organelle CDs are prospected.


Assuntos
Neoplasias , Pontos Quânticos , Carbono , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Imagem Óptica , Organelas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA