Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Transl Med ; 22(1): 406, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689349

RESUMO

BACKGROUND: The specific pathogenesis of UC is still unclear, but it has been clear that defects in intestinal barrier function play an important role in it. There is a temporary lack of specific drugs for clinical treatment. Astragaloside IV (AS-IV) is one of the main active ingredients extracted from Astragalus root and is a common Chinese herbal medicine for the treatment of gastrointestinal diseases. This study aimed to determine whether AS-IV has therapeutic value for DSS or LPS-induced intestinal epithelial barrier dysfunction in vivo and in vitro and its potential molecular mechanisms. METHODS: The intestinal tissues from UC patients and colitis mice were collected, intestinal inflammation was observed by colonoscopy, and mucosal barrier function was measured by immunofluorescence staining. PI3K/AKT signaling pathway activator YS-49 and inhibitor LY-29 were administered to colitic mice to uncover the effect of this pathway on gut mucosal barrier modulation. Then, network pharmacology was used to screen Astragaloside IV (AS-IV), a core active component of the traditional Chinese medicine Astragalus membranaceus. The potential of AS-IV for intestinal barrier function repairment and UC treatment through blockade of the PI3K/AKT pathway was further confirmed by histopathological staining, FITC-dextran, transmission electron microscopy, ELISA, immunofluorescence, qRT-PCR, and western blotting. Finally, 16 S rRNA sequencing was performed to uncover whether AS-IV can ameliorate UC by regulating gut microbiota homeostasis. RESULTS: Mucosal barrier function was significantly damaged in UC patients and murine colitis, and the activated PI3K/AKT signaling pathway was extensively involved. Both in vivo and vitro showed that the AS-IV-treated group significantly relieved inflammation and improved intestinal epithelial permeability by inhibiting the activation of the PI3K/AKT signaling pathway. In addition, microbiome data found that gut microbiota participates in AS-IV-mediated intestinal barrier recovery as well. CONCLUSIONS: Our study highlights that AS-IV exerts a protective effect on the integrality of the mucosal barrier in UC based on the PI3K/AKT pathway, and AS-IV may serve as a novel AKT inhibitor to provide a potential therapy for UC.


Assuntos
Colite Ulcerativa , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Saponinas , Transdução de Sinais , Triterpenos , Animais , Humanos , Masculino , Camundongos , Células CACO-2 , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Triterpenos/uso terapêutico
2.
ACS Nano ; 17(17): 16432-16447, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37646615

RESUMO

Radiotherapy is a mainstay of glioblastoma (GBM) treatment; however, the development of therapeutic resistance has hampered the efficacy of radiotherapy, suggesting that additional treatment strategies are needed. Here, an in vivo loss-of-function genome-wide CRISPR screen was carried out in orthotopic tumors in mice subjected to radiation treatment to identify synthetic lethal genes associated with radiotherapy. Using functional screening and transcriptome analyses, glutathione synthetase (GSS) was found to be a potential regulator of radioresistance through ferroptosis. High GSS levels were closely related to poor prognosis and relapse in patients with glioma. Mechanistic studies demonstrated that GSS was associated with the suppression of radiotherapy-induced ferroptosis in glioma cells. The depletion of GSS resulted in the disruption of glutathione (GSH) synthesis, thereby causing the inactivation of GPX4 and iron accumulation, thus enhancing the induction of ferroptosis upon radiotherapy treatment. Moreover, to overcome the obstacles to broad therapeutic translation of CRISPR editing, we report a previously unidentified genome editing delivery system, in which Cas9 protein/sgRNA complex was loaded into Angiopep-2 (Ang) and the trans-activator of the transcription (TAT) peptide dual-modified extracellular vesicle (EV), which not only targeted the blood-brain barrier (BBB) and GBM but also permeated the BBB and penetrated the tumor. Our encapsulating EVs showed encouraging signs of GBM tissue targeting, which resulted in high GSS gene editing efficiency in GBM (up to 67.2%) with negligible off-target gene editing. These results demonstrate that a combination of unbiased genetic screens, and CRISPR-Cas9-based gene therapy is feasible for identifying potential synthetic lethal genes and, by extension, therapeutic targets.


Assuntos
Vesículas Extracelulares , Glioblastoma , Glioma , Animais , Camundongos , Glioblastoma/genética , Glioblastoma/radioterapia , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Vesículas Extracelulares/genética , Glutationa
3.
Front Immunol ; 13: 954121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903092

RESUMO

Although tremendous effort has been exerted to elucidate the pathogenesis of severe COVID-19 cases, the detailed mechanism of moderate cases, which accounts for 90% of all patients, remains unclear yet, partly limited by lacking the biopsy tissues. Here, we established the COVID-19 infection model in cynomolgus macaques (CMs), monitored the clinical and pathological features, and analyzed underlying pathogenic mechanisms at early infection stage by performing proteomic and metabolomic profiling of lung tissues and sera samples from COVID-19 CMs models. Our data demonstrated that innate immune response, neutrophile and platelet activation were mainly dysregulated in COVID-19 CMs. The symptom of neutrophilia, lymphopenia and massive "cytokines storm", main features of severe COVID-19 patients, were greatly weakened in most of the challenged CMs, which are more semblable as moderate patients. Thus, COVID-19 model in CMs is rational to understand the pathogenesis of moderate COVID-19 and may be a candidate model to assess the safety and efficacy of therapeutics and vaccines against SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Vacinas contra COVID-19 , Humanos , Macaca fascicularis , Proteômica
4.
J Exp Clin Cancer Res ; 41(1): 154, 2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35459258

RESUMO

BACKGROUND: Osteosarcoma (OS) is a malignant bone tumor mostly occurring in children and adolescents, while chemotherapy resistance often develops and the mechanisms involved remain challenging to be fully investigated. METHODS: Genome-wide CRISPR screening combined with transcriptomic sequencing were used to identify the critical genes of doxorubicin resistance. Analysis of clinical samples and datasets, and in vitro and in vivo experiments (including CCK-8, apoptosis, western blot, qRT-PCR and mouse models) were applied to confirm the function of these genes. The bioinformatics and IP-MS assays were utilized to further verify the downstream pathway. RGD peptide-directed and exosome-delivered siRNA were developed for the novel therapy strategy. RESULTS: We identified that E3 ubiquitin-protein ligase Rad18 (Rad18) contributed to doxorubicin-resistance in OS. Further exploration revealed that Rad18 interact with meiotic recombination 11 (MRE11) to promote the formation of the MRE11-RAD50-NBS1 (MRN) complex, facilitating the activation of the homologous recombination (HR) pathway, which ultimately mediated DNA damage tolerance and leaded to a poor prognosis and chemotherapy response in patients with OS. Rad18-knockout effectively restored the chemotherapy response in vitro and in vivo. Also, RGD-exosome loading chemically modified siRad18 combined with doxorubicin, where exosome and chemical modification guaranteed the stability of siRad18 and the RGD peptide provided prominent targetability, had significantly improved antitumor activity of doxorubicin. CONCLUSIONS: Collectively, our study identifies Rad18 as a driver of OS doxorubicin resistance that promotes the HR pathway and indicates that targeting Rad18 is an effective approach to overcome chemotherapy resistance in OS.


Assuntos
Neoplasias Ósseas , Doxorrubicina , Osteossarcoma , Adolescente , Animais , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Camundongos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/farmacologia , Ubiquitina-Proteína Ligases/uso terapêutico
5.
Neuro Oncol ; 24(7): 1056-1070, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34905060

RESUMO

BACKGROUND: Compelling evidence suggests that glioblastoma (GBM) recurrence results from the expansion of a subset of tumor cells with robust intrinsic or therapy-induced radioresistance. However, the mechanisms underlying GBM radioresistance and recurrence remain elusive. To overcome obstacles in radioresistance research, we present a novel preclinical model ideally suited for radiobiological studies. METHODS: With this model, we performed a screen and identified a radiation-tolerant persister (RTP) subpopulation. RNA sequencing was performed on RTP and parental cells to obtain mRNA and miRNA expression profiles. The regulatory mechanisms among NF-κB, YY1, miR-103a, XRCC3, and FGF2 were investigated by transcription factor activation profiling array analysis, chromatin immunoprecipitation, western blot analysis, luciferase reporter assays, and the MirTrap system. Transferrin-functionalized nanoparticles (Tf-NPs) were employed to improve blood-brain barrier permeability and RTP targeting. RESULTS: RTP cells drive radioresistance by preferentially activating DNA damage repair and promoting stemness. Mechanistic investigations showed that continual radiation activates the NF-κB signaling cascade and promotes nuclear translocation of p65, leading to enhanced expression of YY1, the transcription factor that directly suppresses miR-103a transcription. Restoring miR-103a expression under these conditions suppressed the FGF2-XRCC3 axis and decreased the radioresistance capability. Moreover, Tf-NPs improved radiosensitivity and provided a significant survival benefit. CONCLUSIONS: We suggest that the NF-κB-YY1-miR-103a regulatory axis is indispensable for the function of RTP cells in driving radioresistance and recurrence. Thus, our results identified a novel strategy for improving survival in patients with recurrent/refractory GBM.


Assuntos
Glioblastoma , MicroRNAs , Linhagem Celular Tumoral , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Tolerância a Radiação/genética
6.
Food Funct ; 12(20): 9808-9819, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34664576

RESUMO

Corni Fructus (CF) is a traditional medicine and beneficial food with multifaceted protective effects against diabetes and its complications. Since alpha-glucosidase inhibitors (GIs) are promising first-choice oral antihyperglycemic drugs for diabetes, we examined whether GIs from CF (GICF) are useful for diabetes treatment. Therefore, GICF was extracted by ultrasound-assisted enzymatic extraction (UAEE) that is optimized by a three-level, four-factor Box-Behnken design and determined by ultra-performance liquid chromatography. Compared to 36.31 mg g-1 without enzyme treatment, the GICF yield increased to 70.44 mg g-1via UAEE under optimum conditions (0.5% compound enzyme extracted in 23 min at 46 °C and pH 4.8). The activity (91.99%) of GICF was as predicted (93.28%). When GICF was used in an insulin-resistant HepG2 cell model, it significantly ameliorated the glucose metabolism in a dose-dependent manner. Our findings indicate that UAEE may be an innovative method for functional food extraction and a potential strategy for high-quality food ingredient (such as GI) production with high efficiency and productivity.


Assuntos
Cornus/química , Diabetes Mellitus/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Resistência à Insulina , Celulase/isolamento & purificação , Cromatografia Líquida/métodos , Diabetes Mellitus/metabolismo , Glicosídeo Hidrolases/isolamento & purificação , Células Hep G2 , Humanos , Hipoglicemiantes/farmacologia , Poligalacturonase/isolamento & purificação , Ultrassonografia/métodos
7.
Food Funct ; 11(12): 10709-10723, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33226385

RESUMO

Triterpene acids, the main component of Corni Fructus, could improve diabetes mellitus, for which the underlying hypoglycemic mechanism is still unclear, in patients. In this study, total triterpenoid acids were extracted by ultrasonic-microwave assisted extraction optimized by the response surface methodology. The extract was then purified with an X-5 macroporous resin, and the yield of total triterpenoid acids increased to 281.24 mg g-1 as compared with the 35.71 mg g-1 obtained by unassisted extraction. The contents of five components were determined by ultrafast performance liquid chromatography. In addition, the hypoglycemic and hypolipidemic activities of total triterpenoid acids in diabetic mice induced by streptozotocin and a high fat diet were studied. The results indicated that all parameters (oral glucose tolerance, insulin resistance and liver damage) related to diabetes were significantly improved by total triterpenoid acids. Furthermore, total triterpenoid acids significantly recovered the expression level of AMP-activated protein kinase and its downstream proteins, including acetyl-CoA carboxylase, carnitine palmityltransferase-1, peroxisome proliferator-activated receptor alpha, sterol regulatory element-binding protein 1c and fatty acid synthase. Altogether, total triterpenoid acids could ameliorate hyperlipidemia and hyperglycemia in diabetic mice, probably by activating the AMP-activated protein kinase-peroxisome proliferator-activated receptor signaling pathway and inhibiting the sterol regulatory element-binding protein 1c and fatty acid synthase signaling pathways. Therefore, total triterpene acids, isolated from Corni Fructus which is a prevailing health food, could be a functional food ingredient with therapeutic and commercial values.


Assuntos
Cornus/química , Hipoglicemiantes/farmacologia , Hipolipemiantes/farmacologia , Micro-Ondas , Extratos Vegetais/farmacologia , Triterpenos/metabolismo , Ultrassom/métodos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Dieta Hiperlipídica , Teste de Tolerância a Glucose , Humanos , Hiperlipidemias/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos ICR , PPAR alfa/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
8.
Cell Commun Signal ; 17(1): 152, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752873

RESUMO

BACKGROUND: Overexpression of erythropoietin (EPO) and EPO receptor (EPO-R) is associated with poor prognosis in non-small-cell lung carcinoma (NSCLC). Hypoxia, a potent EPO inducer, is a major stimulating factor in the growth of solid tumors. However, how EPO-R expression is regulated under hypoxia is largely unknown. METHODS: The role of EPO-R in NSCLC cell proliferation was assessed by RNA interference in vitro. Luciferase reporter assays were performed to map the promoter elements involved in the EPO-R mRNA transcription. Nuclear co-immunoprecipitation and chromatin immunoprecipitation were performed to assess the interaction among transcription factors HIF1α, SP1, and EGR1 in the regulation of EPO-R under hypoxia. The expression of key EPO-R transcription factors in clinical specimens were determined by immunohistochemistry. RESULTS: Hypoxia induced a dosage and time dependent EPO-R mRNA expression in NSCLC cells. Knockdown of EPO-R reduced NSCLC cell growth under hypoxia (P < 0.05). Mechanistically, a SP1-EGR1 overlapped DNA binding sequence was essential to the hypoxia induced EPO-R transcription. In the early phase of hypoxia, HIF1α interacted with EGR1 that negatively regulated EPO-R. With the exit of EGR1 in late phase, HIF1α positively regulated EPO-R expression through additive interaction with SP1. In clinical NSCLC specimen, SP1 was positively while EGR1 was negatively associated with active EPO-R expression (P < 0.05). CONCLUSIONS: HIF1α, SP1 and EGR1 mediated EPO-R expression played an essential role in hypoxia-induced NSCLC cell proliferation. Our study presents a novel mechanism of EPO-R regulation in the tumor cells, which may provide information support for NSCLC diagnosis and treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/genética , Neoplasias Pulmonares/metabolismo , Receptores da Eritropoetina/genética , Fator de Transcrição Sp1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Proliferação de Células , Humanos , Hipóxia/metabolismo , Neoplasias Pulmonares/patologia , Receptores da Eritropoetina/metabolismo , Transdução de Sinais
9.
Biomed Res Int ; 2018: 3025169, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850502

RESUMO

As a proinflammatory cytokine, tumor necrosis factor-alpha (TNF-α) plays a pivotal role in various autoimmune diseases such as rheumatoid arthritis (RA). Thus, TNF-α has been defined as a therapeutic target for RA. Although some TNF-α antagonists including neutralizing monoclonal antibodies and soluble receptors have been approved to be successful in attenuating symptoms in patients suffering from RA, the long-term use of these passive immunization reagents could cause some problems like a variable degree of immunogenicity. In the present study, in order to wake up active immune responses of RA patients, we developed a recombinant TNF-α therapeutic vaccine (named mrTNF-PADRE) by coupling a 12-amino acid universal Pan HLA-DR Epitope (PADRE) to the protein. Codon optimization was performed to improve the secondary structure of mrTNF-PADRE mRNA to ensure its heterologous expression. As a result, a single codon synonymous mutation greatly elevated recombinant protein expression (about 30% of the total bacteria proteins) in E. coli as compared with the undetectable expression of the unoptimized gene. Although expressed as insoluble inclusion bodies (IBs), the vaccine can be effectively prepared with a purity of over 95% by IBs washing and one-step gel-infiltration chromatography. By this strategy, a stable yield of 5.2 mg purified mrTNF-PADRE per gram of cell paste could be obtained.


Assuntos
Códon/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Fator de Necrose Tumoral alfa/genética , Vacinas Sintéticas/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/sangue , Antígenos/metabolismo , Epitopos de Linfócito T/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Conformação de Ácido Nucleico , RNA Mensageiro/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/isolamento & purificação , Fator de Necrose Tumoral alfa/metabolismo
10.
Mol Pharm ; 15(6): 2338-2347, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29685037

RESUMO

The recently reported inhibitory effects of angiotensin 1-7 (Ang-(1-7)) on various cancers indicate its potential use as a therapeutic agent for primary and metastatic cancers. However, its extremely short half-life in the circulation greatly compromises its potential applications. Here, we reported an Ang-(1-7) analogue peptide with the amino and carboxy termini protected by acetylation and amination. The in vitro and in vivo degradation of the resulting analogue, Ang-AA, were determined using high-performance liquid chromatography (HPLC). At the same time, small RNA interference and competition studies were performed to evaluate the specific capacity of Ang-AA to bind to the cell surface Mas receptor. Cell Counting Kit-8 (CCK8), wound-healing, and Boyden chamber assays were performed to investigate the inhibitory effects of Ang-AA on A549 cells. Finally, the synergistic inhibitory effects of Ang-AA and paclitaxel (PTX) on A549 xenografts in mice were observed using animal imaging systems and survival observations. The toxicity of Ang-AA in mice was evaluated. Our results showed that acetylation and amination significantly inhibited the hydrolyzation of Ang-(1-7) in vitro and in vivo. The half-life of Ang-(1-7) in rats was prolonged from 2.4 ± 0.6 min to 238.7 ± 61.3 min ( p < 0.001). The specific binding of Ang-AA to the Mas receptor was well preserved, and Ang-AA exerted significantly greater inhibitory effects on the proliferation, migration, and invasion of A549 cells than Ang-(1-7). The combination of Ang-AA and PTX exhibited a significantly greater synergistic inhibitory effect on A549 xenografts than the combination of Ang-(1-7) and PTX. Ang-AA did not display obvious toxicity in mice. Our findings indicate acetylation and amination is a simple and effective method for producing Ang-(1-7) as a bioactive peptide.


Assuntos
Angiotensina I/farmacologia , Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Células A549 , Acetilação , Aminação , Angiotensina I/química , Angiotensina I/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Química Farmacêutica , Sinergismo Farmacológico , Meia-Vida , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Theranostics ; 8(6): 1527-1539, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29556339

RESUMO

Purpose: Glioblastoma is the most common and aggressive type of primary brain malignancy and is associated with a poor prognosis. Previously, we found that phosphatase of regenerating liver-3 (PRL-3) was significantly up-regulated in glioblastoma as determined by a microarray analysis. However, the function of PRL-3 in glioblastoma remains unknown. We aimed to investigate the clinical relationship between PRL-3 and glioblastoma, and uncover the mechanisms of PRL-3 in the process of glioblastoma. Methods: PRL-3 expression was evaluated in 61 glioblastoma samples and 4 cell lines by RT-qPCR and immunohistochemistry. Kaplan-Meier analysis was performed to evaluate the prognostic value of PRL-3 for overall survival (OS) and progression-free survival (PFS) for glioblastoma patients. Proliferation was evaluated by Cell Counting Kit-8 (CCK-8) assay and EdU proliferation assay, migration and invasion by wound-closure/Transwell assays, and qRT-PCR/immunoblotting/IHC were used for both in vivo and in vitro investigations. Result: A high PRL-3 expression level was closely correlated with unfavorable OS and PFS for glioblastoma patients, and was also significantly correlated with Ki-67 expression. Down-regulation of PRL-3 inhibited glioma cell proliferation, invasion and migration through ERK/JNK/matrix metalloproteinase 7 (MMP7) in vitro and in vivo. Conclusions: PRL-3 expression enhances the invasion and proliferation of glioma cells, highlighting this phosphatase as a novel prognostic candidate and an attractive target for future therapy in glioblastoma.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Metaloproteinase 7 da Matriz/genética , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatases/genética , Idoso , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Humanos , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Masculino , Metaloproteinase 7 da Matriz/metabolismo , Camundongos Nus , Pessoa de Meia-Idade , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Invasividade Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Prognóstico , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cell Death Dis ; 9(4): 416, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29549328

RESUMO

FOXP3 is an important X-linked suppressor of breast cancer. It is reported that FOXP3 is usually mutant, absent, or cytoplasmic distribution in breast cancer cells, which increases the risk of breast cancer. However, in our study the full-length FOXP3 transcript can be detected in breast cancer cells and nuclear FOXP3 is expressed in some breast cancer samples. Therefore, an important question is how the tumor-suppressive function of wild-type FOXP3 is negated in these cancers. We found that Gal-1 is a novel interacting protein of FOXP3 in breast cancer. Furthermore, our results show that the FKH domain in FOXP3 is essential for its interaction with Gal-1. Through ChIP-seq assay, we found that the expression of Gal-1 could inhibit a variety of target genes which were directly regulated by FOXP3. More importantly, these FOXP3-bound genes are involved in the development and metastasis of cancer. Furthermore, functional studies revealed that blocking the FOXP3/Gal-1 interaction restores the tumor-suppressive properties of FOXP3 in breast cancer cells. Finally, we observed that the nuclear abundance of Gal-1 was significantly higher in breast cancer tissues than that in adjacent normal tissues. In addition, we identified that the acidic extracellular microenvironment in breast cancer tissues causes Gal-1 to accumulate in the nucleus. Altogether, nuclear Gal-1 interferes with the binding of FOXP3 to DNA by interacting with the FKH domain of FOXP3, and it indicates a possible mechanism for the loss of the tumor-suppressive properties of FOXP3 in wild-type FOXP3-positive breast cancer.


Assuntos
Núcleo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Galectina 1/metabolismo , Sequência de Aminoácidos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , DNA/química , DNA/metabolismo , Feminino , Fatores de Transcrição Forkhead/química , Galectina 1/antagonistas & inibidores , Galectina 1/química , Humanos , Microscopia Confocal , Ligação Proteica , Domínios Proteicos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Microambiente Tumoral
14.
Biochem Biophys Res Commun ; 497(1): 394-400, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29438713

RESUMO

Immunotherapy is gathering momentum as a kind of important therapy for cancer patients. However, monotherapies have limited efficacy in improving outcomes and benefit only in a small subset of patients. Combination therapies targeting multiple pathways often can augment an immune response to improve survival further. Here, the tumoricidal effects of the dual hPD-L1(human programmed cell death ligand 1) vaccination/HER2(human epidermal growth factor receptor 2) gene vaccination immunotherapy against the established HER2-expressed cancers were observed. Animals treated with combination therapy using hPD-L1 vaccine and HER2 gene vaccine had significantly improved survival in a mammary carcinoma model. We observed an increase in tumor growth inhibition following treatment. The percentage of the tumor-free mice (%) was much higher in the combined PD-L1/HER2 group. Furthermore, under the tumor-burden condition, hPD-L1 vaccine enhanced humoral immunity of HER2 gene vaccine. And the combination treatment increased the IFN-γ-producing effector T cells. Additionally, splenocytes from the combined PD-L1/HER2 group immunized mice possessed higher CTL activity. Notably, vaccination with combination therapy induced a significant decrease in the percentage of CD4+CD25+ Treg cells. Collectively, these data demonstrate that PD-L1/HER2 gene vaccine combination therapy synergistically generates marked tumoricidal effects against established HER2-expressing cancers.


Assuntos
Antígeno B7-H1/imunologia , Vacinas Anticâncer/administração & dosagem , Terapia Combinada/métodos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Receptor ErbB-2/imunologia , Animais , Apoptose/imunologia , Sinergismo Farmacológico , Feminino , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/patologia , Resultado do Tratamento , Vacinação/métodos
15.
Oncotarget ; 8(27): 44694-44704, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28591725

RESUMO

Colon cancer stem cell (cCSC) is considered as the seed cell of colon cancer initiation and metastasis. Cyclooxygenase-2 (COX2), a downstream target of NFκB, is found to be essential in promoting cancer stem cell renewal. However, how COX2 is dysregulated in cCSCs is largely unknown. In this study, we found that the expression of transcription factor FOXP3 was much lower in the spheroids than that in the parental tumor cells. Overexpression of FOXP3 significantly decreased the numbers of spheres, reduced the side population. Accordingly, FOXP3 expression decreased the tumor size and weight in the xenograft model. The tumor inhibitory effects of FOXP3 were rarely seen when COX2 was additionally knocked down. Mechanically, FOXP3 transcriptionally repressed COX2 expression via interacting with and thus inhibiting p65 activity on the putative NFκB response elements in COX2 promoter. Taken together, we here revealed possible involvement of FOXP3 in regulating cCSC self-renewal via tuning COX2 expression, and thus providing a new target for the eradication of colon cancer stem cells.


Assuntos
Autorrenovação Celular , Neoplasias Colorretais/metabolismo , Ciclo-Oxigenase 2/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ciclo-Oxigenase 2/genética , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica
16.
J Control Release ; 260: 32-45, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28522195

RESUMO

Although radiotherapy is a highly effective treatment for abdominal or pelvic cancer patients, it can increase the incidence of severe gastrointestinal (GI) toxicity. As an intestinal growth factor, glucagon-like peptide 2 (GLP-2) has been shown to improve the preclinical models of both short bowel syndrome and inflammatory bowel disease by stimulating intestinal growth. Teduglutide ([Gly2]GLP-2), a recombinant human GLP-2 variant, has a prolonged half-life and stability as compared to the native GLP-2 peptide, but still requires daily application in the clinic. Here, we designed and prepared a new degradation-resistant GLP-2 analogue dimer, designated GLP-2②, with biotechnological techniques. The purity of GLP-2②reached 97% after ammonium sulphate precipitation and anion exchange chromatography purification, and the purification process was simple and cost-effective. We next confirmed that the GLP-2② exhibited enhanced activities compared with [Gly2]GLP-2, the long-acting, degradation-resistant analogue. Notably, GLP-2② offers a pharmacokinetic and therapeutic advantage in the treatment of radiation-induced intestinal injury over [Gly2]GLP-2. We further demonstrated that GLP-2② rapidly activates divergent intracellular signaling pathways involved in cell survival and apoptosis. Taken together, our data revealed a potential novel and safe peptide drug for limiting the adverse effect of radiotherapy on the gastrointestinal system.


Assuntos
Raios gama/efeitos adversos , Gastroenteropatias/prevenção & controle , Peptídeo 2 Semelhante ao Glucagon/química , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Animais , Apoptose/efeitos da radiação , Ciclo Celular/efeitos da radiação , Linhagem Celular , Citocinas/metabolismo , Dipeptidil Peptidase 4/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Peptídeos/farmacocinética , Peptídeos/farmacologia , Multimerização Proteica , Protetores contra Radiação/farmacocinética , Ratos Sprague-Dawley
17.
Biomed Res Int ; 2017: 4817376, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28299326

RESUMO

Although, as an antioxidant enzyme, human Cu,Zn superoxide dismutase 1 (hSOD1) can mitigate damage to cell components caused by free radicals generated by aerobic metabolism, large-scale manufacturing and clinical use of hSOD1 are still limited by the challenge of rapid and inexpensive production of high-quality eukaryotic hSOD1 in recombinant forms. We have demonstrated previously that it is a promising strategy to increase the expression levels of soluble hSOD1 so as to increase hSOD1 yields in E. coli. In this study, a wild-type hSOD1 (wtSOD1) and three mutant SOD1s (mhSOD1s), in which free cysteines were substituted with serine, were constructed and their expression in soluble form was measured. Results show that the substitution of Cys111 (mhSOD1/C111S) increased the expression of soluble hSOD1 in E. coli whereas substitution of the internal Cys6 (mhSOD1/C6S) decreased it. Besides, raised levels of soluble expression led to an increase in hSOD1 yields. In addition, mhSOD1/C111S expressed at a higher soluble level showed lower toxicity and stronger whitening and antiradiation activities than those of wtSOD1. Taken together, our data demonstrate that C111S mutation in hSOD1 is an effective strategy to develop new SOD1-associated reagents and that mhSOD1/C111S is a satisfactory candidate for large-scale production.


Assuntos
Cisteína/química , Escherichia coli/genética , Mutação , Superóxido Dismutase-1/biossíntese , Animais , Linhagem Celular , Cricetinae , Dano ao DNA , Dissulfetos/química , Escherichia coli/metabolismo , Humanos , Melanócitos/citologia , Melanoma Experimental , Oxirredução , Proteínas Recombinantes/biossíntese
18.
Nat Commun ; 8: 14483, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266545

RESUMO

Oestrogen receptor alpha (ERα) is a well-known target of endocrine therapy for ERα-positive breast cancer. ERα-negative cells, which are enriched during endocrine therapy, are associated with metastatic relapse. Here we determine that loss of ERα in the invasive front and in lymph node metastasis in human breast cancer is significantly correlated with lymphatic metastasis. Using in vivo and in vitro experiments, we demonstrate that ERα inhibits breast cancer metastasis. Furthermore, we find that ERα is a novel regulator of vinculin expression in breast cancer. Notably, ERα suppresses the amoeboid-like movement of breast cancer cells by upregulating vinculin in 3D matrix, which in turn promotes cell-cell and cell-matrix adhesion and inhibits the formation of amoeboid-like protrusions. A positive association between ERα and vinculin expression is found in human breast cancer tissues. The results show that ERα inhibits breast cancer metastasis and suggest that ERα suppresses cell amoeboid-like movement by upregulating vinculin.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Receptor alfa de Estrogênio/metabolismo , Metástase Neoplásica , Vinculina/metabolismo , Animais , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Transplante de Neoplasias
19.
J Bone Miner Res ; 32(2): 407-418, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27653023

RESUMO

Regulation of matrix metalloproteinases (MMPs) by collagen in the fibroblast-like synoviocytes (FLSs) plays a critical role in joint destruction in rheumatoid arthritis (RA). Our previous study indicated that discoidin receptor 2 (DDR2) mediated collagen upregulation of MMPs. However, the precise underlying mechanism remains unclear. We report here that CYR61, a secreted, extracellular matrix-associated signaling protein which is capable of regulating a broad range of cellular activities, including cell adhesion, migration, proliferation, and apoptosis, is significantly upregulated in collagen II-stimulated RA FLS. Further studies found that collagen II-activated phosphorylated-DDR2 induces CYR61 through activation of transcription factor activator protein 1 (AP-1). The elevated CYR61, in turn, accelerates MMP1 production via ETS1 (ETS proto-oncogene 1). In addition, CYR61 significantly promotes FLS invasion and migration. Blockade of CYR61 by an adenovirus expressing CYR61 shRNA (Ad-shCYR61) in vivo remarkably ameliorated the severity of arthritis, reduced inflammatory cytokine secretion, and attenuated bone erosion as detected by micro-computed tomography (µCT), in collagen-induced arthritis (CIA) rats. Taken together, we uncovered the Collagen II-DDR2-AP-1-CYR61-ETS1-MMP1 loop in RA FLS. In which, CYR61 acts as a hinge to promote cartilage damage through regulating FLS invasion, migration, and MMP1 production and the inflammatory cascade in RA. Thus, CYR61 may be a promising diagnostic and therapeutic target for RA treatment. © 2016 American Society for Bone and Mineral Research.


Assuntos
Artrite Reumatoide/patologia , Reabsorção Óssea/patologia , Movimento Celular , Proteína Rica em Cisteína 61/metabolismo , Receptor com Domínio Discoidina 2/metabolismo , Fibroblastos/patologia , Metaloproteinase 1 da Matriz/metabolismo , Sinoviócitos/patologia , Animais , Artrite Experimental/patologia , Artrite Reumatoide/diagnóstico por imagem , Citocinas/biossíntese , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Articulações/patologia , Masculino , Fosforilação , Proto-Oncogene Mas , Ratos Wistar , Transdução de Sinais , Membrana Sinovial/patologia , Fator de Transcrição AP-1/metabolismo , Regulação para Cima
20.
Sci Rep ; 6: 22040, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26907705

RESUMO

Multiple mechanisms exist in regulation of host responses to massive challenges from microbiota to maintain immune homeostasis in the intestines. Among these is the enriched Th17 cells in the intestines, which regulates intestinal homeostasis through induction of antimicrobial peptides and secretory IgA among others. However, the means by which Th17 cells develop in response to microbiota is still not completely understood. Although both TLR5 and CD172α(+) lamina propria dendritic cells (LPDC) have been shown to promote Th17 cell development, it is still unclear whether TLR5 mediates the CD172α(+)LPDC induction of Th17 cells. By using a microbiota antigen-specific T cell reporter mouse system, we demonstrated that microbiota antigen-specific T cells developed into Th17 cells in the intestinal LP, but not in the spleen when transferred into TCRßxδ(-/-) mice. LPDCs expressed high levels of TLR5, and most CD172α(+)LPDCs also co-expressed TLR5. LPDCs produced high levels of IL-23, IL-6 and TGFß when stimulated with commensal flagellin and promoted Th17 cell development when cultured with full-length CBir1 flagellin but not CBir1 peptide. Wild-type CD172α(+), but not CD172α(-), LPDCs induced Th17 cells, whereas TLR5-deficient LPDC did not induce Th17 cells. Our data thereby demonstrated that TLR5 mediates CD172α(+)LPDC induction of Th17 cells in the intestines.


Assuntos
Células Dendríticas/imunologia , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Receptores Imunológicos/imunologia , Células Th17/imunologia , Receptor 5 Toll-Like/imunologia , Animais , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Flagelina/farmacologia , Regulação da Expressão Gênica/imunologia , Homeostase , Interleucina-23/genética , Interleucina-23/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Mucosa Intestinal/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , Receptores de Antígenos de Linfócitos T alfa-beta/deficiência , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/deficiência , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Transdução de Sinais , Células Th17/citologia , Receptor 5 Toll-Like/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA