Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(10): e23677, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38775792

RESUMO

Although the use of Doxorubicin (Dox) is extensive in the treatment of malignant tumor, the toxic effects of Dox on the heart can cause myocardial injury. Therefore, it is necessary to find an alternative drug to alleviate the Dox-induced cardiotoxicity. Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin, which is an active ingredient of Artemisia annua. The study investigates the effects of DHA on doxorubicin-induced cardiotoxicity and ferroptosis, which are related to the activation of Nrf2 and the regulation of autophagy. Different concentrations of DHA were administered by gavage for 4 weeks in mice. H9c2 cells were pretreated with different concentrations of DHA for 24 h in vitro. The mechanism of DHA treatment was explored through echocardiography, biochemical analysis, real-time quantitative PCR, western blotting analysis, ROS/DHE staining, immunohistochemistry, and immunofluorescence. In vivo, DHA markedly relieved Dox-induced cardiac dysfunction, attenuated oxidative stress, alleviated cardiomyocyte ferroptosis, activated Nrf2, promoted autophagy, and improved the function of lysosomes. In vitro, DHA attenuated oxidative stress and cardiomyocyte ferroptosis, activated Nrf2, promoted clearance of autophagosomes, and reduced lysosomal destruction. The changes of ferroptosis and Nrf2 depend on selective degradation of keap1 and recovery of lysosome. We found for the first time that DHA could protect the heart from the toxic effects of Dox-induced cardiotoxicity. In addition, DHA significantly alleviates Dox-induced ferroptosis through the clearance of autophagosomes, including the selective degradation of keap1 and the recovery of lysosomes.


Assuntos
Artemisininas , Autofagia , Cardiotoxicidade , Doxorrubicina , Ferroptose , Miócitos Cardíacos , Fator 2 Relacionado a NF-E2 , Artemisininas/farmacologia , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Autofagia/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Doxorrubicina/toxicidade , Camundongos , Ferroptose/efeitos dos fármacos , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/metabolismo , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Linhagem Celular , Ratos
2.
Int Immunopharmacol ; 124(Pt A): 110851, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37651853

RESUMO

According to epidemiological studies, smoking is one of the leading causes of the high incidence of abdominal aortic aneurysms (AAA).3,4-Benzopyrene (Bap) is a by-product of coal tar and tobacco combustion produced by the incomplete combustion of organic fuels. It is an essential component of both automobile exhaust and tobacco smoke, it is also an important member of the air pollutants. However, the exact mechanism by which Bap can worsen the condition of patients with AAA and increase the mortality of patients with AAA remains unknown. This research aims to investigate the role of Bap in inducing pyroptosis in AAA. In vitro experiments, we revealed that pyroptosis-Gasdermin D (GSDMD) increased when Bap was used. Additionally, the release of inflammatory factors, such as IL-1ß and IL-18 were also rising. An mRNA sequencing analysis revealed that macrophages expressed a high level of the endothelin gene when cells were stimulated by Bap. It seemed that smooth muscle cells pyroptosis was related to macrophages. Experiments revealed that endothelin could increase the calcium ion concentration in smooth muscle cells, resulting in a large amount of ROS and activation of NLRP3 inflammasomes. We discovered that treatment with endothelin receptor antagonist (ABT-546) in vivo and calcium ion chelator (BAPTA) in vitro decreased AAA diameter, downregulated NLRP3 inflammasomes and ROS, and significantly reduced the number of activated GSDMD. Inflammatory mediators were released at a lower level. These findings suggest that Bap-induced pyroptosis may be mediated by the ET-1-Ca2+-inflammasome pathway, providing a new way to reduce mortality in AAA patients.

3.
Ecotoxicol Environ Saf ; 254: 114701, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871353

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are produced during combustion of organic matter, such as during cigarette smoking, and they exist widely in the environment. Exposure to 3,4-benzo[a]pyrene (BaP), as the most widely studied PAHs, relates to many cardiovascular diseases. However, the underlying mechanism of its involvement remains largely unclear. In this study, we developed a myocardial ischemia-reperfusion (I/R) injury mouse model and an oxygen and glucose deprivation-reoxygenation H9C2 cell model to evaluate the effect of BaP in I/R injury. After BaP exposure, the expression of autophagy-related proteins, the abundance of NLRP3 inflammasomes, and the degree of pyroptosis were measured. Our results show that BaP aggravates myocardial pyroptosis in a autophagy-dependent manner. In addition, we found that BaP activates the p53-BNIP3 pathway via the aryl hydrocarbon receptor to decrease autophagosome clearance. Our findings present new insights into the mechanisms underlying cardiotoxicity and reveal that the p53-BNIP3 pathway, which is involved in autophagy regulation, is a potential therapeutic target for BaP-induced myocardial I/R injury. Because PAHs are omnipresent in daily life, the toxic effects of these harmful substances should not be underestimated.


Assuntos
Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Piroptose , Benzo(a)pireno/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Supressora de Tumor p53 , Autofagia
4.
Phytomedicine ; 104: 154336, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35849969

RESUMO

BACKGROUND: The pathogenesis of myocardial ischemia/reperfusion is complex, involving multiple regulatory genes and environmental factors, and requiring the simultaneous regulation of multiple targets. Meanwhile, Traditional Chinese Medicine (TCM) has certain advantages in the comprehensive treatment of multi-site, multi-target conditions and overall regulation of this condition. This study explores the effect of the well-known TCM, the Shexiang Baoxin Pill (SBP) on myocardial ischemia/reperfusion injury in mice. MATERIALS AND METHODS: In vivo, 20 mg/kg/day SBP was administered by gavage for 28 days. In vitro, cardiomyocytes were pretreated with 25 µg/ml SBP for 24 h. Evans blue/TTC double-staining was employed to determine the infarct size. Markers of myocardial injury were detected in the serum and cell supernatants. The changes of pyroptosis and autophagy proteins were detected by western blot. Immunofluorescence, immunohistochemistry and PCR were performed to further illustrate the results. RESULTS: SBP significantly reduced the myocardial infarct size, decreased the myocardial injury markers, inhibited cardiomyocyte pyroptosis and oxidative stress, and promoted autophagy in vivo. In vitro, SBP alleviated cardiomyocyte pyroptosis, inhibited oxidative stress, reduced IL-1ß and IL-18 secretion, and unblocked autophagy flux. Myocardial injury is mitigated by SBP via the rapid degradation of autophagosomes, and SBP promotes the accumulation of autophagosomes by downregulating mmu_circ_0005874, Map3k8 and upregulating mmu-miR-543-3p. CONCLUSION: We found for the first time that SBP can inhibit pyroptosis and oxidative stress, and protect from myocardial I/R injury. In addition, it inhibits pyroptosis and improves H/R injury by promoting autophagosome generation and accelerating autophagic flux. SBP interferes with autophagy through the interaction between mmu_circ_0005874/mmu-miR-543-3p/Map3k8.


Assuntos
Medicamentos de Ervas Chinesas , MicroRNAs , Traumatismo por Reperfusão Miocárdica , Animais , Autofagia , Medicamentos de Ervas Chinesas/uso terapêutico , MAP Quinase Quinase Quinases , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos , Proteínas Proto-Oncogênicas , RNA/genética , RNA/metabolismo
5.
Int J Biol Sci ; 16(14): 2559-2579, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32792857

RESUMO

Metformin (Met) is a major widely used oral glucose lowering drug for the treatment of type 2 diabetes. It is reported that metformin could regulate autophagy in various diseases of cardiovascular system including in I/R injury, diabetic cardiomyopathy and heart failure. Autophagy plays a controversial role in ischemia/reperfusion (I/R) injury, and this research was performed to explore the cardioprotective effect of Met on I/R injury and discuss the underlying mechanism of autophagy in it. In vivo and in vitro, Met exerted cardioprotection function of decreasing myocardial inflammation and apoptosis with a decrease in the level of autophagy. Moreover, Met significantly inhibited autophagosome formation and restore the impairment of autophagosome processing, which lead to cardioprotection effect of Met. Akt was up-regulated in Met-treated I/R hearts and miransertib, a pan-AKT inhibitor, was able to reverse the alleviating autophagy effect of Met. We demonstrate that Met protects cardiomyocytes from I/R-induced apoptosis and inflammation through down regulation of autophagy mediated by Akt signaling pathway.


Assuntos
Autofagia/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Hipoglicemiantes/farmacologia , Inflamação/prevenção & controle , Masculino , Metformina/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
Oxid Med Cell Longev ; 2017: 4130824, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28392886

RESUMO

The present study was aimed at investigating the effect of amifostine on myocardial ischemia/reperfusion (I/R) injury of mice and H9c2 cells cultured with TBHP (tert-butyl hydroperoxide). The results showed that pretreatment with amifostine significantly attenuated cell apoptosis and death, accompanied by decreased reactive oxygen species (ROS) production and lower mitochondrial potential (ΔΨm). In vivo, amifostine pretreatment alleviated I/R injury and decreased myocardial apoptosis and infarct area, which was paralleled by increased superoxide dismutase (SOD) and reduced malondialdehyde (MDA) in myocardial tissues, increased Bcl2 expression, decreased Bax expression, lower cleaved caspase-3 level, fewer TUNEL positive cells, and fewer DHE-positive cells in heart. Our results indicate that amifostine pretreatment has a protective effect against myocardial I/R injury via scavenging ROS.


Assuntos
Amifostina/farmacologia , Amifostina/uso terapêutico , Apoptose/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Mitocôndrias/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Profilaxia Pré-Exposição , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico
7.
Biomed Res Int ; 2015: 175291, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821786

RESUMO

Dyslipidemia increases the risks for atherosclerosis in part by impairing endothelial integrity. Endothelial progenitor cells (EPCs) are thought to contribute to endothelial recovery after arterial injury. Oxidized low-density lipoprotein (ox-LDL) can induce EPC dysfunction, but the underlying mechanism is not well understood. Human EPCs were cultured in endothelial growth medium supplemented with VEGF (10 ng/mL) and bFGF (10 ng/mL). The cells were treated with ox-LDL (50 µg/mL). EPC proliferation was assayed by using CCK8 kits. Expression and translocation of nuclear factor-kabba B (NF-κB) were evaluated. The level of reactive oxygen species (ROS) in cells was measured using H2DCF-DA as a fluorescence probe. The activity of NADPH oxidase activity was determined by colorimetric assay. Ox-LDL significantly decreased the proliferation, migration, and adhesion capacity of EPCs, while significantly increased ROS production and NADPH oxidase expression. Ox-LDL induced NF-κB P65 mRNA expression and translocation in EPCs. Thus ox-LDL can induce EPC dysfunction at least by increasing expression and translocation of NF-κB P65 and NADPH oxidase activity, which represents a new mechanism of lipidemia-induced vascular injury.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Lipoproteínas LDL/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Feminino , Sangue Fetal/citologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA