Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38258135

RESUMO

In this study, we described physico-chemical properties of novel nanoformulation of photosensitizer-pyropheophorbide α 17-diethylene glycol ester (XL) (chlorophyll α derivative), revealing insights into antitumor activity and maintaining quality, meeting the pharmaceutical approach of new nanoformulation design. Our formulation, based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles, increased XL solubility and selective tumor-targeted accumulation. In our research, we revealed, for the first time, that XL binding to polyvinyl alcohol (PVA) enhances XL photophysical activity, providing the rationale for PVA application as a stabilizer for nanoformulations. Results of FTIR, DSC, and XRD revealed the physical interactions between XL and excipients, including PVA, indicating that the encapsulation maintained XL binding to PVA. The encapsulated XL exhibited higher photophysical activity compared to non-encapsulated substance, which can be attributed to the influence of residual PVA. Gamma-irradiation led to degradation of XL; however, successful sterilization of the samples was achieved through the filtration. Importantly, the encapsulated and sterilized XL retained cytotoxicity against both 2D and 3D tumor cell models, demonstrating the potential of the formulated NP-XL for photodynamic therapy applications, but lacked the ability to reactivate epigenetically silenced genes. These findings provide valuable insights into the design and characterization of PLGA-based nanoparticles for the encapsulation of photosensitizers.

2.
Pharmaceutics ; 15(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37111769

RESUMO

Photodynamic therapy (PDT) in oncology is characterized by low invasiveness, minimal side effects, and little tissue scarring. Increasing the selectivity of PDT agents toward a cellular target is a new approach intended to improve this method. This study is devoted to the design and synthesis of a new conjugate based on meso-arylporphyrin with a low-molecular-weight tyrosine kinase inhibitor, Erlotinib. A nano-formulation based on Pluronic F127 micelles was obtained and characterized. The photophysical and photochemical properties and biological activity of the studied compounds and their nano-formulation were studied. A significant, 20-40-fold difference between the dark and photoinduced activity was achieved for the conjugate nanomicelles. After irradiation, the studied conjugate nanomicelles were 1.8 times more toxic toward the EGFR-overexpressing cell line MDA-MB-231 compared to the conditionally normal NKE cells. The IC50 was 0.073 ± 0.014 µM for the MDA-MB-231 cell line and 0.13 ± 0.018 µM for NKE cells after irradiation for the target conjugate nanomicelles.

3.
J Sep Sci ; 46(3): e2200731, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427291

RESUMO

While histone deacetylase inhibitors, such as vorinostat, demonstrate a significant effect against hematological cancers, their application for solid tumor treatment is limited. However, there is strong evidence that combinatorial administration of vorinostat and genotoxic agents (e.g., doxorubicin) enhances the antitumoral action of both drugs against tumors. We developed a high-performance liquid chromatography method for the simultaneous determination of doxorubicin and vorinostat in polymeric nanoparticles designed to provide the parenteral administration of both drugs and increase their safety profile. We performed separation on Nucleodur C-18 Gravity column with a mixture of 10 mM potassium dihydrogen phosphate buffer pH 3.9:ACN (90:10 v/v) as mobile phase at 240 nm. The method was linear within the concentration range of 4.2-52.0 µg/ml for both drugs with limits of detection and quantification of 3.5 and 10.7 µg/ml for doxorubicin and 2.5 and 7.7 µg/ml for vorinostat, respectively. The method was precise and accurate over the concentration range of analysis. Drug loading was 5.4% for doxorubicin and 0.8% for vorinostat. Degradation of doxorubicin after irradiation was less than 5%, while the amount of vorinostat decreased at 88% under the same conditions. Thus, the validated method could be adopted for routine simultaneous analysis of doxorubicin and vorinostat in polymeric nanoparticles.


Assuntos
Nanopartículas , Neoplasias , Humanos , Vorinostat , Cromatografia Líquida de Alta Pressão/métodos , Doxorrubicina/análise , Doxorrubicina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Preparações Farmacêuticas
4.
Polymers (Basel) ; 16(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38201737

RESUMO

Unsaturated fatty acids, such as oleic acid (OA) and linoleic acid (LA), are promising antimicrobial and cytostatic agents. We modified OA and LA with thymol (TOA and TLA, respectively) to expand their bioavailability, stability, and possible applications, and encapsulated these derivatives in polymeric nanoparticles (TOA-NPs and TLA-NPs, respectively). Prior to synthesis, we performed mathematical simulations with PASS and ADMETlab 2.0 to predict the biological activity and pharmacokinetics of TOA and TLA. TOA and TLA were synthesized via esterification in the presence of catalysts. Next, we formulated nanoparticles using the single-emulsion solvent evaporation technique. We applied dynamic light scattering, Uv-vis spectroscopy, release studies under gastrointestinal (pH 1.2-6.8) and blood environment simulation conditions (pH 7.4), and in vitro biological activity testing to characterize the nanoparticles. PASS revealed that TOA and TLA have antimicrobial and anticancer therapeutic potential. ADMETlab 2.0 provided a rationale for TOA and TLA encapsulation. The nanoparticles had an average size of 212-227 nm, with a high encapsulation efficiency (71-93%), and released TOA and TLA in a gradual and prolonged mode. TLA-NPs possessed higher antibacterial activity against B. cereus and S. aureus and pronounced cytotoxic activity against MCF-7, K562, and A549 cell lines compared to TOA-NPs. Our findings expand the biomedical application of fatty acids and provide a basis for further in vivo evaluation of designed derivatives and formulations.

5.
Pharmaceutics ; 14(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36365151

RESUMO

Currently, molecular dynamics simulation is being widely applied to predict drug-polymer interaction, and to optimize drug delivery systems. Our study describes a combination of in silico and in vitro approaches aimed at improvement in polymer-based nanoparticle design for cancer treatment. We applied the PASS service to predict the biological activity of novel carboplatin derivatives. Subsequent molecular dynamics simulations revealed the dependence between the drug-polymer binding energy along with encapsulation efficacy, drug release profile, and the derivatives' chemical structure. We applied ICP-MS analysis, the MTT test, and hemolytic activity assay to evaluate drug loading, antitumor activity, and hemocompatibility of the formulated nanoparticles. The drug encapsulation efficacy varied from 0.2% to 1% and correlated with in silico modelling results. The PLGA nanoparticles revealed higher antitumor activity against A549 human non-small-cell lung carcinoma cells compared to non-encapsulated carboplatin derivatives with IC50 values of 1.40-23.20 µM and 7.32-79.30 µM, respectively; the similar cytotoxicity profiles were observed against H69 and MCF-7 cells. The nanoparticles efficiently induced apoptosis in A549 cells. Thus, nanoparticles loaded with novel carboplatin derivatives demonstrated high application potential for anticancer therapy due to their efficacy and high hemocompatibility. Our results demonstrated the combination of in silico and in vitro methods applicability for the optimization of encapsulation and antitumor efficacy in novel drug delivery systems design.

6.
Nanomedicine (Lond) ; 17(18): 1217-1235, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36136593

RESUMO

Background: Serious side effects caused by paclitaxel formulation, containing toxic solubilizer Cremophor® EL, and its nonspecific accumulation greatly limit clinical paclitaxel application. Aim: To design paclitaxel-loaded copolymer of lactic and glycolic acids nanoparticles decorated with alpha-fetoprotein third domain (rAFP3d-NP) to increase paclitaxel safety profile. Methods: rAFP3d-NP was obtained via carbodiimide technique. Results: The particles were characterized with high paclitaxel loading content of 5% and size of 280 nm. rAFP3d-NP revealed biphasic profile with 67% release of paclitaxel during 220 h. Increased area under the curveinf and mean residence time values after rAFP3d-NP administration confirmed prolonged blood circulation compared with paclitaxel. rAFP3d-NP demonstrated significant tumor growth inhibition at 4T1 and SKOV-3 models. Conclusion: rAFP3d-NP is a promising delivery system for paclitaxel and can be applied similarly for delivery of other hydrophobic drugs.


Assuntos
Nanopartículas , Neoplasias , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , alfa-Fetoproteínas , Nanopartículas/química , Paclitaxel/química , Polímeros/química , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Portadores de Fármacos/química
7.
Pharmaceutics ; 14(3)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35335951

RESUMO

Capsules with shells based on nanoparticles of different nature co-assembled at the interface of liquid phases of emulsion are promising carriers of lipophilic drugs. To obtain such capsules, theoretically using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and experimentally using dynamic light-scattering (DLS) and transmission electron microscopy (TEM) methods, the interaction of like-charged silica nanoparticles and detonation nanodiamonds in an aqueous solution was studied and their ratios selected for the formation of submicron-sized colloidosomes. The resulting colloidosomes were modified with additional layers of nanoparticles and polyelectrolytes, applying LbL technology. As a model anti-cancer drug, thymoquinone was loaded into the developed capsules, demonstrating a significant delay of the release as a result of colloidosome surface modification. Fluorescence flow cytometry and confocal laser scanning microscopy showed efficient internalization of the capsules by MCF7 cancer cells. The obtained results demonstrated a high potential for nanomedicine application in the field of the drug-delivery system development.

8.
Int J Mol Sci ; 23(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35328540

RESUMO

The conventional targeted delivery of chemotherapeutic and diagnostic agents utilizing nanocarriers is a promising approach for cancer theranostics. Unfortunately, this approach often faces hindered tumor access that decreases the therapeutic index and limits the further clinical translation of a developing drug. Here, we demonstrated a strategy of simultaneously double-targeting the drug to two distinct cites of tumor tissue: the tumor endothelium and cell surface receptors. We used fourth-generation polyamideamine dendrimers modified with a chelated Gd and functionalized with selectin ligand and alpha-fetoprotein receptor-binding peptide. According to the proposed strategy, IELLQAR peptide promotes the conjugate recruitment to the tumor inflammatory microenvironment and enhances extravasation through the interaction of nanodevice with P- and E-selectins expressed by endothelial cells. The second target moiety-alpha-fetoprotein receptor-binding peptide-enhances drug internalization into cancer cells and the intratumoral retention of the conjugate. The final conjugate contained 18 chelated Gd ions per dendrimer, characterized with a 32 nm size and a negative surface charge of around 18 mV. In vitro contrasting properties were comparable with commercially available Gd-chelate: r1 relaxivity was 3.39 for Magnevist and 3.11 for conjugate; r2 relaxivity was 5.12 for Magnevist and 4.81 for conjugate. By utilizing this dual targeting strategy, we demonstrated the increment of intratumoral accumulation, and a remarkable enhancement of antitumor effect, resulting in high-level synergy compared to monotargeted conjugates. In summary, the proposed strategy utilizing tumor tissue double-targeting may contribute to an enhancement in drug and diagnostic accumulation in aggressive tumors.


Assuntos
Dendrímeros , Neoplasias , Linhagem Celular Tumoral , Dendrímeros/química , Células Endoteliais/patologia , Gadolínio DTPA , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Microambiente Tumoral , alfa-Fetoproteínas
9.
Antioxidants (Basel) ; 10(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34943088

RESUMO

Pheophorbide a 17-diethylene glycol ester (XL-8), is a promising high-active derivative of known photosensitizer chlorin e6 used in photodynamic therapy. However, high lipophilicity and poor tumor accumulation limit XL-8 therapeutic application. We developed a novel XL-8 loaded with poly(D,L-lactide-co-glycolide) nanoparticles using the single emulsion-solvent evaporation method. The nanoparticles possessed high XL-8 loading content (4.6%) and encapsulation efficiency (87.7%) and a small size (182 ± 19 nm), and negative surface charge (-22.2 ± 3.8 mV) contributed to a specific intracellular accumulation. Sustained biphasic XL-8 release from nanoparticles enhanced the photosensitizer photostability upon irradiation that could potentially reduce the quantity of the drug applied. Additionally, the encapsulation of XL-8 in the polymer matrix preserved phototoxic activity of the payload. The nanoparticles displayed enhanced cellular internalization. Flow cytometry and confocal laser-scanning microscopy studies revealed rapid XL-8 loaded nanoparticles distribution throughout the cell and initiation of DNA damage, glutathione depletion, and lipid peroxidation via reactive oxygen species formation. The novel nanoformulated XL-8 simultaneously revealed a significant phototoxicity accompanied with enhanced photostability, in contrast with traditional photosensitizers, and demonstrated a great potential for further in vivo studies.

10.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830136

RESUMO

The selection of technological parameters for nanoparticle formulation represents a complicated development phase. Therefore, the statistical analysis based on Box-Behnken methodology is widely used to optimize technological processes, including poly(lactic-co-glycolic acid) nanoparticle formulation. In this study, we applied a two-level three-factor design to optimize the preparation of nanoparticles loaded with cobalt (CoTPP), manganese (MnClTPP), and nickel (NiTPP) metalloporphyrins (MeP). The resulting nanoparticles were examined by dynamic light scattering, X-ray diffraction, Fourier transform infrared spectroscopy, MTT test, and hemolytic activity assay. The optimized model of nanoparticle formulation was validated, and the obtained nanoparticles possessed a spherical shape and physicochemical characteristics enabling them to deliver MeP in cancer cells. In vitro hemolysis assay revealed high safety of the formulated MeP-loaded nanoparticles. The MeP release demonstrated a biphasic profile and release mechanism via Fick diffusion, according to release exponent values. Formulated MeP-loaded nanoparticles revealed significant antitumor activity and ability to generate reactive oxygen species. MnClTPP- and CoTPP-nanoparticles specifically accumulated in tissues, preventing wide tissue distribution caused by long-term circulation of the hydrophobic drug. Our results suggest that MnClTPP- and CoTPP-nanoparticles represent the greatest potential for utilization in in anticancer therapy due to their effectiveness and safety.


Assuntos
Complexos de Coordenação/farmacocinética , Metaloporfirinas/farmacocinética , Metais/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Porfirinas/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Liberação Controlada de Fármacos , Feminino , Células HeLa , Hemólise/efeitos dos fármacos , Humanos , Células MCF-7 , Metaloporfirinas/química , Metaloporfirinas/farmacologia , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Distribuição Tecidual , Difração de Raios X
11.
Front Mol Biosci ; 8: 671908, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026846

RESUMO

Mitochondrial dysfunction is known to be associated with a wide range of human pathologies, such as cancer, metabolic, and cardiovascular diseases. One of the possible ways of mitochondrial involvement in the cellular damage is excessive production of reactive oxygen and nitrogen species (ROS and RNS) that cannot be effectively neutralized by existing antioxidant systems. In mitochondria, ROS and RNS can contribute to protein and mitochondrial DNA (mtDNA) damage causing failure of enzymatic chains and mutations that can impair mitochondrial function. These processes further lead to abnormal cell signaling, premature cell senescence, initiation of inflammation, and apoptosis. Recent studies have identified numerous mtDNA mutations associated with different human pathologies. Some of them result in imbalanced oxidative phosphorylation, while others affect mitochondrial protein synthesis. In this review, we discuss the role of mtDNA mutations in cancer, diabetes, cardiovascular diseases, and atherosclerosis. We provide a list of currently described mtDNA mutations associated with each pathology and discuss the possible future perspective of the research.

12.
Curr Pharm Des ; 26(1): 103-109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31755379

RESUMO

Mitochondrial dysfunction underlies several human chronic pathologies, including cardiovascular disorders, cancers and neurodegenerative diseases. Impaired mitochondrial function associated with oxidative stress can be a result of both nuclear and mitochondrial DNA (mtDNA) mutations. Neurological disorders associated with mtDNA mutations include mitochondrial encephalomyopathy, chronic progressive external ophthalmoplegia, neurogenic weakness, and Leigh syndrome. Moreover, mtDNA mutations were shown to play a role in the development of Parkinson and Alzheimer's diseases. In this review, current knowledge on the distribution and possible roles of mtDNA mutations in the onset and development of various neurodegenerative diseases, with special focus on Parkinson's and Alzheimer's diseases has been discussed.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Mutação , Doenças Neurodegenerativas/genética , Humanos , Mitocôndrias/patologia , Estresse Oxidativo
13.
Free Radic Biol Med ; 143: 522-533, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520768

RESUMO

The mechanisms of binary catalyst therapy (BCT) and photodynamic therapy (PDT) are based on the formation of reactive oxygen species (ROS). This ROS formation results from specific chemical reactions. In BCT, light exposure does not necessarily initiate ROS formation and BCT application is not limited to regions of tissues that are accessible to illumination like photodynamic therapy (PDT). The principle of BCT is electron transition, resulting in the interaction of a transition metal complex (catalyst) and substrate molecule. MnIII- tetraphenylporphyrin chloride (MnClTPP) in combination with an ascorbic acid (AA) has been proposed as an appropriate candidate for cancer treatment regarding the active agents in BCT. The goal of this study was to determine whether MnClTPP in combination with AA would be a promising agent for BCT. The problem of used MnClTPP's, low solubility in water, was solved by MnClTPP loading into PLGA matrix. H2O2 produced during AA decomposition oxidized MnClTPP to high-reactive oxo-MnV species. MnClTPP in presence AA leads to the production of excessive ROS levels in vitro. ROS are mainly substrates of catalase and superoxide dismutase (H2O2 and O2●-). SOD1 and catalase were identified as the key players of the MnClTPP ROS-induced cell defense system. The cytotoxicity of MnClTPP-loaded nanoparticles (NPs) was greatly increased in the presence of specific catalase inhibitor (3-amino-1,2,4-triazole (3AT)) and superoxide dismutase 1 (SOD1) inhibitor (diethyldithiocarbamate (DDC)). Cell death resulted from the combined activation of caspase-dependent (caspase 3/9 system) and independent pathways, namely the AIF translocation to nuclei. Preliminary acute toxicity and in vivo anticancer studies have been revealed the safe and potent anticancer effect of PLGA-entrapped MnClTPP in combination with AA. The findings indicate that MnClTPP-loaded PLGA NPs are promising agents for BCT.


Assuntos
Metaloporfirinas/química , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose , Movimento Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Neoplasias/metabolismo , Neoplasias/patologia , Oxirredução , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Biomed Mater Res B Appl Biomater ; 107(4): 1150-1158, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30281905

RESUMO

Co-encapsulation of abiraterone acetate (AbrA) and docetaxel (Dtx) in polymeric nanoparticles as novel prototypes for prostate cancer treatment combining hormonal and chemotherapy was designed. Nanoparticles (NPs) composed of poly(dl-lactide-co-glycolide) (PLGA) were prepared by single-emulsion solvent evaporation technique and characterized in terms of morphology with atomic force microscopy and transmission electron microscopy. HPLC method for simultaneous determination of AbrA and Dtx encapsulation efficacy was developed. Also differential scanning calorimetry and Fourier-transform infrared spectroscopy were provided. To study the effectiveness of cellular internalization and distribution of NPs with AbrA and Dtx co-encapsulation (NP-AbrA/Dtx), a fluorescence microscopy was utilized. NPs prepared had size 256.3 ±9.4 nm and zeta potential -18.4 ±1.4 mV. Encapsulation efficacy for AbrA was 68.7% and for Dtx was 74.3%. NPs were able to control the AbrA and Dtx release within 24 h. The mathematical model of drug release was performed. The results obtained from confocal microscopy showed the effective accumulation of the NP-AbrA/Dtx in the cytoplasm of cells. Synthesized NPs possessed satisfactory parameters and a biphasic release profile, proceeding by the Fick diffusion mechanism, which provide prolonged release of the drugs and maintenance of their concentration. It was shown that NPs loaded with AbrA and Dtx exhibited a high cytotoxic activity on the LNCaP cell line, similar to the combination of free drugs of AbrA and Dtx, but in contrast to the combination of substances, had a synergistic mechanism of action. Our findings support the potential use of developed NPs in further in vivo studies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1150-1158, 2019.


Assuntos
Androstenos , Docetaxel , Portadores de Fármacos , Nanopartículas , Neoplasias , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Células A549 , Androstenos/química , Androstenos/farmacocinética , Androstenos/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Docetaxel/química , Docetaxel/farmacocinética , Docetaxel/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia
15.
Acta Bioeng Biomech ; 20(1): 65-77, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29658530

RESUMO

PURPOSE: The aim of this study was to compare the physico-chemical and biological properties of polymeric nanoparticles obtained from poly(DL-lactide-co-glycolide) (PLGA) with different ratios of monomers loaded with daunorubicin (DNR). METHODS: DNR-loaded nanoparticles (NPs) were prepared with use of modified simultaneous double-emulsion solvent evaporation/diffusion technique. NPs were characterized using dynamic light scattering, atomic force microscopy, transmission electron microscopy, scanning electron microscopy, and differential scanning calorimetry and Fourier transform infrared spectroscopy. RESULTS: NPs with DNR were differing in size and zeta potential, depending on the type of polymer. The data obtained show that total content of DNR correlates with the values of the binding constant of DNR with polymers. The release of DNR from NPs proceeds predominantly for polymers with lower binding constants. The in vitro study of NPs on the MCF-7 cells showed similar activity of particles and substances while for the anthracycline-resistant MCF-7Adr cells the cytotoxicity of the nanoparticles was 3 to 7 times higher depending on the type of copolymer. CONCLUSIONS: PLGA DNR-loaded nanoparticles can be used to overcome multidrug resistance (MDR) as well as for reducing the frequency of DNR reception due to the prolonged effect, which allows maintaining the concentration of the drug at the required level. The usefulness of binding constant calculations for obtaining nanoparticles with the maximum drug loading was proven. The rate of drug administration and the frequency of administration can be calculated based on the DNR release profiles and release parameters that depend on polymer type.


Assuntos
Daunorrubicina/farmacologia , Liberação Controlada de Fármacos , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Cinética , Microscopia de Força Atômica , Nanopartículas/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Protein Expr Purif ; 143: 77-82, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29127003

RESUMO

A wide range of methods are known to increase the prokaryotic intracellular recombinant proteins solubility, for instance, growth at low temperature, supplementation of culture media with "chemical chaperones" (proline, glycine-betaine, and trehalose), co-expression with chaperones or highly soluble fusion partners. As an alternative, we have introduced the polyglutamate tag, which, as it has been shown, increased the protein solubility and facilitated folding. In this study we evaluated the minimal quantity of high density negatively charged EEEEVE amino acid repeats (pGlu) necessary to switch the recombinant receptor-binding domain of human alpha-fetoprotein (rbdAFP) expression almost entirely from the inclusion bodies to the soluble cytoplasmic fraction in E. coli. For this purpose, genetic constructs based on pET vectors coding rbdAFP and containing from 1 to 4 additional EEEEVE repeats at the C-terminus have been prepared. It was found that 3 pGlu repeats is the minimal number, that leads to a complete shift of the expression to the soluble cytoplasmic fraction in E. coli SHuffle Express T7 while 4 repeats were required for that in E. coli BL21(DE3). The rbdAFP contained 4 pGlu repeats was purified making use of ion-exchange chromatography and characterized by circular dichroism and ability to bind and accumulate in AFP receptor positive cancer cells in order to check for the structural and specific activity alterations related to the additional polyanionic sequence introduction.


Assuntos
Ácido Poliglutâmico/metabolismo , Receptores de Peptídeos/isolamento & purificação , Receptores de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Leucócitos Mononucleares , Ácido Poliglutâmico/química , Ácido Poliglutâmico/genética , Domínios Proteicos , Dobramento de Proteína , Receptores de Peptídeos/química , Receptores de Peptídeos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA