Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 171: 107667, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516478

RESUMO

BACKGROUND: The link between exposure to ambient air pollution and mortality from cardiorespiratory diseases is well established, while evidence on neurodegenerative disorders including Parkinson's Disease (PD) remains limited. OBJECTIVE: We examined the association between long-term exposure to ambient air pollution and PD mortality in seven European cohorts. METHODS: Within the project 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE), we pooled data from seven cohorts among six European countries. Annual mean residential concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (O3), as well as 8 PM2.5 components (copper, iron, potassium, nickel, sulphur, silicon, vanadium, zinc), for 2010 were estimated using Europe-wide hybrid land use regression models. PD mortality was defined as underlying cause of death being either PD, secondary Parkinsonism, or dementia in PD. We applied Cox proportional hazard models to investigate the associations between air pollution and PD mortality, adjusting for potential confounders. RESULTS: Of 271,720 cohort participants, 381 died from PD during 19.7 years of follow-up. In single-pollutant analyses, we observed positive associations between PD mortality and PM2.5 (hazard ratio per 5 µg/m3: 1.25; 95% confidence interval: 1.01-1.55), NO2 (1.13; 0.95-1.34 per 10 µg/m3), and BC (1.12; 0.94-1.34 per 0.5 × 10-5m-1), and a negative association with O3 (0.74; 0.58-0.94 per 10 µg/m3). Associations of PM2.5, NO2, and BC with PD mortality were linear without apparent lower thresholds. In two-pollutant models, associations with PM2.5 remained robust when adjusted for NO2 (1.24; 0.95-1.62) or BC (1.28; 0.96-1.71), whereas associations with NO2 or BC attenuated to null. O3 associations remained negative, but no longer statistically significant in models with PM2.5. We detected suggestive positive associations with the potassium component of PM2.5. CONCLUSION: Long-term exposure to PM2.5, at levels well below current EU air pollution limit values, may contribute to PD mortality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Doença de Parkinson , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Poluentes Ambientais/análise , Fuligem/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-35270332

RESUMO

Long-term air pollution exposure increases the risk for cardiovascular disease, but little is known about the temporal relationships between exposure and health outcomes. This study aims to estimate the exposure-lag response between air pollution exposure and risk for ischemic heart disease (IHD) and stroke incidence by applying distributed lag non-linear models (DLNMs). Annual mean concentrations of particles with aerodynamic diameter less than 2.5 µm (PM2.5) and black carbon (BC) were estimated for participants in five Swedish cohorts using dispersion models. Simultaneous estimates of exposure lags 1-10 years using DLNMs were compared with separate year specific (single lag) estimates and estimates for lag 1-5- and 6-10-years using moving average exposure. The DLNM estimated no exposure lag-response between PM2.5 total, BC, and IHD. However, for PM2.5 from local sources, a 20% risk increase per 1 µg/m3 for 1-year lag was estimated. A risk increase for stroke was suggested in relation to lags 2-4-year PM2.5 and BC, and also lags 8-9-years BC. No associations were shown in single lag models. Increased risk estimates for stroke in relation to lag 1-5- and 6-10-years BC moving averages were observed. Estimates generally supported a greater contribution to increased risk from exposure windows closer in time to incident IHD and incident stroke.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Isquemia Miocárdica , Acidente Vascular Cerebral , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Incidência , Isquemia Miocárdica/induzido quimicamente , Isquemia Miocárdica/etiologia , Dinâmica não Linear , Material Particulado/análise , Fuligem , Acidente Vascular Cerebral/induzido quimicamente
3.
JMIR Mhealth Uhealth ; 8(2): e14615, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32014846

RESUMO

BACKGROUND: Adequate levels of physical activity (PA) and good cardiorespiratory fitness (CRF) are associated with profound health benefits for individuals with mobility disability (MD). Despite the vast amount of research published in the field of PA interventions, little attention has been given to individuals with MD. OBJECTIVE: The aim of this study was to examine the efficacy of an app-based versus a supervised exercise and health coaching program to support adults with MD to increase levels of PA, CRF, and improve body composition. METHODS: Participants with self-perceived MD, aged 18 to 45 years, were included in this 12-week parallel-group randomized controlled trial and allocated at random to an app-based intervention, using commercially available apps-the Swedish Military training app (FMTK), the Acupedo walking app, and the LogMyFood food photography app-or a supervised exercise and health coaching intervention, including 1 weekly supervised exercise session and healthy lifestyle coaching. The primary outcome was the level of moderate-to-vigorous PA (MVPA) measured with accelerometers. Secondary outcomes included CRF measured by a submaximal test performed on a stationary bicycle and body composition measured by bioelectrical impedance. All outcomes were measured at baseline, 6 weeks, and 12 weeks. Linear mixed-effect models were used to assess the between-group differences, as well as the within-group changes through time, in each intervention group. RESULTS: A total of 110 participants with MD were randomized to an app-based intervention (n=55) or a supervised exercise and health intervention (n=55). The mean age of participants was 34.9 years (SD 6.1), and 81.8% (90/110) of the participants were women. CRF showed a moderate increase in both groups after 12 weeks-1.07 (95% CI -0.14 to 2.27) mL/kg/min increase in the app-based group and 1.76 (95% CI 0.70 to 2.83) mLkg/min increase in the supervised exercise group. However, the intention-to-treat analysis showed no significant differences between the groups in MVPA or CRF after 12 weeks. Waist circumference was significantly lower in the app-based intervention group. CONCLUSIONS: Commercially available apps increased levels of CRF and improved body composition over 12 weeks to the same extent as supervised exercise sessions, showing that both are equally effective. However, neither the app-based intervention nor the supervised exercise intervention increased MVPA. TRIAL REGISTRATION: International Standard Randomized Controlled Trial Number (ISRCTN): 22387524; http://isrctn.com/ISRCTN22387524.


Assuntos
Aptidão Cardiorrespiratória , Pessoas com Deficiência , Aplicativos Móveis , Adolescente , Adulto , Composição Corporal , Exercício Físico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Smartphone , Suécia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA