Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-30603114

RESUMO

Glioblastoma is the most aggressive and invasive brain tumor and has a poor prognosis; elucidating the underlying molecular mechanisms is essential to select molecular targeted therapies. Here, we investigated the effect of microRNAs on the marked invasiveness of glioblastoma. U373 glioblastoma cells were infected with 140 different microRNAs from an OncomiR library, and the effects of the invasion-related microRNAs and targeted molecules were investigated after repeated Matrigel invasion assays. Screening of the OncomiR library identified miR-23a as a key regulator of glioblastoma invasion. In six glioblastoma cell lines, a positive correlation was detected between the expression levels of miR-23a and invasiveness. A luciferase reporter assay demonstrated that homeobox D10 (HOXD10) was a miR-23a-target molecule, which was verified by high scores from both the PicTar and miRanda algorithms. Forced expression of miR-23a induced expression of invasion-related molecules, including uPAR, RhoA, and RhoC, and altered expression of glial-mesenchymal transition markers such as Snail, Slug, MMP2, MMP9, MMP14, and E-cadherin; however, these changes in expression levels were reversed by HOXD10 overexpression. Thus, miR-23a significantly promoted invasion of glioblastoma cells with polarized formation of focal adhesions, while exogenous HOXD10 overexpression reversed these phenomena. Here, we identify miR-23a-regulated HOXD10 as a pivotal regulator of invasion in glioblastoma, providing a novel mechanism for the aggressive invasiveness of this tumor and providing insight into potential therapeutic targets.

2.
Cancer Sci ; 105(9): 1152-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24989082

RESUMO

MicroRNA (miRNA) can function as tumor suppressors or oncogenes, and also as potential specific cancer biomarkers; however, there are few published studies on miRNA in synovial sarcomas, and their function remains unclear. We transfected the OncomiR miRNA Precursor Virus Library into synovial sarcoma Fuji cells followed by a colony formation assay to identify miRNAs to confer an aggressive tumorigenicity, and identified miR-17-5p from the large colonies. MiR-17 was found to be induced by a chimeric oncoprotein SS18-SSX specific for synovial sarcoma, and all examined cases of human synovial sarcoma expressed miR-17, even at high levels in several cases. Overexpression of miR-17 in synovial sarcoma cells, Fuji and HS-SYII, increased colony forming ability in addition to cell growth, but not cell motility and invasion. Tumor volume formed in mice in vivo was significantly increased by miR-17 overexpression with a marked increase of MIB-1 index. According to PicTar and Miranda algorithms, which predicted CDKN1A (p21) as a putative target of miR-17, a luciferase assay was performed and revealed that miR-17 directly targets the 3'-UTR of p21 mRNA. Indeed, p21 protein level was remarkably decreased by miR-17 overexpression in a p53-independent manner. It is noteworthy that miR-17 succeeded in suppressing doxorubicin-evoked higher expression of p21 and conferred the drug resistance. Meanwhile, introduction of anti-miR-17 in Fuji and HS-SYII cells significantly decreased cell growth, consistent with rescued expression of p21. Taken together, miR-17 promotes the tumor growth of synovial sarcomas by post-transcriptional suppression of p21, which may be amenable to innovative therapeutic targeting in synovial sarcoma.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , MicroRNAs/genética , Proteínas de Fusão Oncogênica/fisiologia , Interferência de RNA , Sarcoma Sinovial/metabolismo , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Transplante de Neoplasias , Sarcoma Sinovial/genética , Sarcoma Sinovial/patologia
3.
Neuro Oncol ; 16(7): 960-70, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24470554

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is one of the most aggressive human tumors, and the establishment of an effective therapeutic reagent is a pressing priority. Recently, it has been shown that the tumor tissue consists of heterogeneous components and that a highly aggressive population should be the therapeutic target. METHODS: Through a single subcutaneous passage of GBM cell lines LN443 and U373 in mice, we have developed highly aggressive variants of these cells named LN443X, U373X1, and U373X2, which showed increased tumor growth, colony-forming potential, sphere-forming potential, and invasion ability. We further investigated using microarray analysis comparing malignant cells with their parental cells and mRNA expression analysis in grades II to IV glioma samples. RESULTS: Adipocyte enhancer binding protein 1, epiregulin (EREG), and microfibrillar associated protein 5 were identified as candidate genes associated with higher tumor grade and poor prognosis. Immunohistochemical analysis also indicated a correlation of a strong expression of EREG with short overall survival. Furthermore, both EREG stimulation and EREG introduction of GBM cell lines were found to increase phosphorylation of epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase and resulted in the promotion of colony formation, sphere formation, and in vivo tumor formation. Gefitinib treatment inhibited phosphorylation of EGFR and extracellular signal-regulated kinase and led to tumor regression in U373-overexpressed EREG. CONCLUSION: These results suggested that EREG is one of the molecules involved in glioma malignancy, and EGFR inhibitors may be a candidate therapeutic agent for EREG-overexpressing GBM patients.


Assuntos
Neoplasias Encefálicas/patologia , Epirregulina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glioblastoma/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Feminino , Imunofluorescência , Glioblastoma/metabolismo , Xenoenxertos , Humanos , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Confocal , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Mol Cancer Ther ; 11(6): 1289-99, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22532597

RESUMO

Glioblastoma multiforme (GBM) is one of the most aggressive human tumors with a poor prognosis. Current standard treatment includes chemotherapy with the DNA-alkylating agent temozolomide concomitant with surgical resection and/or irradiation. However, a number of cases are resistant to temozolomide-induced DNA damage due to elevated expression of the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). Here, we show that upregulation of both MGMT and STAT3 was accompanied with acquisition of temozolomide resistance in the GBM cell line U87. Inactivation of STAT3 by inhibitor or short hairpin RNA (shRNA) downregulated MGMT expression in GBM cell lines. MGMT upregulation was not observed by the treatment of interleukin (IL)-6 which is a strong activator of STAT3. Contrarily, forced expressed MGMT could be downregulated by STAT3 inhibitor which was partially rescued by the proteasome inhibitor, MG132, suggesting the STAT3-mediated posttranscriptional regulation of the protein levels of MGMT. Immunohistochemical analysis of 44 malignant glioma specimens showed significant positive correlation between expression levels of MGMT and phosphorylated STAT3 (p-STAT3; P < 0.001, r = 0.58). Importantly, the levels of both MGMT and p-STAT3 were increased in the recurrence compared with the primary lesion in paired identical tumors of 12 cases. Finally, we showed that STAT3 inhibitor or STAT3 knockdown potentiated temozolomide efficacy in temozolomide-resistant GBM cell lines. Therefore, STAT3 inhibitor might be one of the candidate reagents for combination therapy with temozolomide for patients with temozolomide-resistant GBM.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Dacarbazina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Dacarbazina/farmacologia , Regulação para Baixo , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Temozolomida , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA