Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Eur J Med Chem ; 280: 116896, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39366252

RESUMO

Among all non-communicable diseases, cancer is ranked as the second most common cause of death and is rising constantly. While cancer treatments mainly include radiation therapy, chemotherapy, and surgery; chemotherapy is considered the most commonly employed and effective treatment. Most of the chemotherapeutic agents are azoles based compounds and imidazole is one such insightful azole. The anticancer properties of imidazole-based compounds have been thoroughly explored in recent years and all monosubstituted, disubstituted, trisubstituted, and tetrasubstituted imidazoles have been explored for their anticancer activities. Along with these compounds, other imidazole-based compounds like 1,3-dihydro-2H-imidazole-2-thiones, imidazolones, and poly imidazole compounds have also been explored for their anticancer activities. The activities of these compounds are heavily influenced by their structural resemblance to combretastatin 4A and ABI (2-aryl-4-benzoyl-imidazole). The lead compounds were highly active on breast, gastric, colon, ovarian, cervical, bone marrow, melanoma, prostate, lung, leukemic, neuroblastoma, liver, Ehrlich, melanoma, and pancreatic cancers. The targets of these leads like tubulin, heme oxygenases, VEGF, tyrosine kinases, EGFR, and others have also been explored. The exploration of the anticancer potential of substituted imidazole compounds is the main topic of this review including synthesis, SAR, and mechanism.

2.
Nat Chem ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367063

RESUMO

Molecular catalysts offer tunable active and peripheral sites, rendering them ideal model systems to explore fundamental concepts in catalysis. However, hydrophobic designs are often regarded as detrimental for dissolution in aqueous electrolytes. Here we show that established cobalt terpyridine catalysts modified with hydrophobic perfluorinated alkyl side chains can assemble at the gas-liquid-solid interfaces on a gas diffusion electrode. We find that the self-assembly of these perfluorinated units on the electrode surface results in a catalytic system selective for electrochemical CO2 reduction to CH4, whereas every other cobalt terpyridine catalyst reported previously was only selective for CO or formate. Mechanistic investigations suggest that the pyridine units function as proton shuttles that deliver protons to the dynamic hydrophobic pocket in which CO2 reduction takes place. Finally, integration with fluorinated carbon nanotubes as a hydrophobic conductive scaffold leads to a Faradaic efficiency for CH4 production above 80% at rates above 10 mA cm-2-impressive activities for a molecular electrocatalytic system.

3.
Discov Nano ; 19(1): 145, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256285

RESUMO

Breast cancer is one of the leading causes of death among women globally, making its diagnosis and treatment challenging. The use of nanotechnology for cancer diagnosis and treatment is an emerging area of research. To address this issue, multiwalled carbon nanotubes (MWCNTs) were ligand exchanged with butyric acid (BA) to gain hydrophilic character. The successful functionalization was confirmed by FTIR spectroscopy. Surface morphology changes were observed using SEM, while TEM confirmed the structural integrity of the MWCNTs after functionalization. Particle size, zeta potential, and UV spectroscopy were also performed to further characterize the nanoparticles. The breast cancer aptamer specific to Mucin-1 (MUC-1) was then conjugated with the functionalized MWCNTs. These MWCNTs successfully targeted breast cancer cells (MDA-MB-231) as examined by cellular uptake studies and exhibited a reduction in cancer-induced inflammation, as evidenced by gene transcription (qPCR) and protein expression (immunoblotting) levels. Immunoblot and confocal-based immunofluorescence assay (IFA) indicated the ability of CNTs to induce photothermal cell death of MDA-MB-231 cells. Upon imaging, cancer cells were effectively visualized due to the MWCNTs' ability to act as magnetic resonance imaging (MRI) contrast agents. Additionally, MWCNTs demonstrated photothermal capabilities to eliminate bound cancer cells. Collectively, our findings pave the way for developing aptamer-labeled MWCNTs as viable "theranostic alternatives" for breast cancer treatment.

4.
Cureus ; 16(7): e64902, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39156323

RESUMO

BACKGROUND: Osteonecrosis of the hip is defined as necrosis of the bone tissue due to some form of vascular insult, subsequently leading to the collapse of the femoral head and secondary osteoarthritis, which leads to pain and impaired joint function. This disease is widely known to affect middle-aged groups; however, in the Indian population, even younger people are more commonly affected. The disease has a debilitating effect on the activities of daily living (ADL) and the productivity of individuals and has financial consequences. With the increased utilization of magnetic resonance imaging (MRI) in society, the disease is diagnosed in its early stages. Hip-preserving surgery like tensor fascia lata (TFL) muscle pedicle iliac bone grafting should be given a chance to preserve the native femoral head. METHODOLOGY: At a tertiary care teaching hospital in Gorakhpur, India, an observational clinical study was carried out. This study comprised 40 patients, ages 18-50 years, with femoral head osteonecrosis (stages II and III of the Ficat-Arlet staging system), who came to our institute's orthopedic outpatient department. Patients were treated with multiple drillings, curettage, and cheilectomy of the femoral head, in addition to TFL muscle pedicle bone grafting. The Harris hip score (HHS) was utilized to assess the clinical results, and the radiological assessment focused on signs of revascularization. RESULT: In our study, the most prevalent age group was 20-30 years (67.5%), with a male predominance (85%). Among our cohort of 40 patients, the HHS indicated excellent outcomes (90-100) in 14 cases (35%), good outcomes (80-89) in 19 cases (47.5%), fair outcomes (70-79) in six cases (15%), and poor outcomes (<70) in one case (2.5%), at the time of the final follow-up. The final follow-up period varied from one to 10 years. CONCLUSION: TFL muscle pedicle bone grafting procedure provides excellent clinical and radiological outcomes, especially in young patients in whom femoral head-preserving surgery is preferred over total hip arthroplasty. This procedure is effective in both early and advanced stages of femoral head osteonecrosis, provided there are no arthritic changes. It reduces symptoms and improves functional outcomes.

5.
Anal Chem ; 96(37): 14891-14901, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39215686

RESUMO

The destructive assay of bulk uranium and plutonium, a cornerstone for chemical quality control and nuclear material accounting of fuel matrices, mandates robust and precise methodologies. Despite ongoing research, simultaneous, matrix independent determination of U and Pu has eluded solution owing to inherent limitations in aqueous acid medium, viz., coexistence of multiple oxidation states, coupled electrochemical reactions, smaller potential window, and requirement for multistep sample preconditioning and tedious electrode modification. The present study addresses this challenge wherein non-aqueous methanesulfonic acid (MSA) served the dual role of solvent and analyte media with a bare glassy carbon (GC) electrode. Fuel matrices, viz., (U, Pu)C, (U, Pu)O2, PuO2, UO3, UO2, and U3O8, were quantitatively dissolved in biodegradable MSA, without using any additives. Redox speciation of the analytes, U and Pu, in MSA was probed by ultraviolet-visible spectrophotometry and electrometry, revealing the absence of electrocatalytic regeneration and stabilization of single oxidation state, viz., U(VI) and Pu(IV), along with relevant redox-energetic (electron transfer and reversibility) and kinetic data. Bidentate coordination of MSA with the U analyte was indicated by X-ray absorption spectroscopy studies and was corroborated by density functional theory-based investigations, providing the optimized structure, viz., [UO2(MSA)2] and [Pu(MSA)4], binding modes and energy, partial charges, and molecular orbital diagrams. Based on these insights, the feasibility of differential pulse voltammetry (DPV)-based assay method development for U and Pu separately and in different U/Pu ratios, representing assorted fuel matrices, was probed. Analytical figures of merit for both U and Pu (detection limit of ∼10-5 M, precision of ∼0.2%, accuracy of ∼0.2%, high sensitivity, repeatability, and non-influence of relevant interferences) were determined, method validated employing actual fuel samples, and compared with the established, multi-step biamperometry method. Hence, a universal, simultaneous U and Pu destructive assay method in non-aqueous MSA media based on DPV with a commercial GC electrode was demonstrated.

6.
ACS Omega ; 9(25): 27289-27299, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38947836

RESUMO

Hydroxycarboxylic acids, viz., α-hydroxyisobutyric acid (HIBA) and mandelic acid (MA), have been widely employed as eluents for inner transition metal separation studies. Both extractants have identical functional groups (OH and COOH) with different side-chains. Despite their similarities in binding motifs, they show different retention behaviors for thorium and uranium in liquid chromatography. To understand the mechanism behind the trend, a detailed study on the aqueous phase interaction of thorium with both extractants is carried out by speciation, spectroscopy, and density functional theory-based calculations. Potentiometric titration experiments are carried out to reveal the stability and species formed. Electrospray ionization mass spectrometry is performed to identify the formation of different species by Th with both HIBA and MA. It is seen that for Th-HIBA and Th-MA, the dominating species are ML3 and ML4, respectively. A similar pattern observed in potentiometric speciation analysis supports the tendency of Th to form higher stoichiometric species with MA than with HIBA. The difference in the dominating species thus helps in explaining the reversal in the retention behavior of uranium and thorium in the reverse-phase liquid chromatographic separation. The results obtained are corroborated with extended X-ray absorption fine structure spectroscopic measurements and density functional theory (DFT) calculations.

7.
ACS Synth Biol ; 13(7): 1994-2007, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38899943

RESUMO

The advancement in nanotechnology has completely revolutionized various fields, including pharmaceutical sciences, and streamlined the potential therapeutic of many diseases that endanger human life. The synthesis of green nanoparticles by biological processes is an aspect of the newly emerging scientific field known as "green nanotechnology". Due to their safe, eco-friendly, nontoxic nature, green synthesis tools are better suited to produce nanoparticles between 1 and 100 nm. Nanoformulation of different types of nanoparticles has been made possible by using green production techniques and commercially feasible novel precursors, such as seed extracts, algae, and fungi, that act as potent reducing, capping, and stabilizing agents. In addition to this, the biofunctionalization of nanoparticles has also broadened its horizon in the field of environmental remediation and various novel therapeutic innovations including wound healing, antimicrobial, anticancer, and nano biosensing. However, the major challenge pertaining to green nanotechnology is the agglomeration of nanoparticles that may alter the surface topology, which can affect biological physiology, thereby contributing to system toxicity. Therefore, a thorough grasp of nanoparticle toxicity and biocompatibility is required to harness the applications of nanotechnology in therapeutics.


Assuntos
Recuperação e Remediação Ambiental , Química Verde , Nanopartículas , Nanopartículas/química , Química Verde/métodos , Recuperação e Remediação Ambiental/métodos , Humanos , Nanotecnologia/métodos
8.
Mini Rev Med Chem ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38859778

RESUMO

Cancer remains a primary cause of death globally, and effective treatments are still limited. While chemotherapy has notably enhanced survival rates, it brings about numerous side effects. Consequently, the ongoing challenge persists in developing potent anti-cancer agents with minimal toxicity. The versatile nature of the quinazoline moiety has positioned it as a pivotal component in the development of various antitumor agents, showcasing its promising role in innovative cancer therapeutics. This concise review aims to reveal the potential of quinazolines in creating anticancer medications that target histone deacetylases (HDACs).

9.
Mol Divers ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470555

RESUMO

Globally, lung cancer is a significant public health concern due to its role as the leading cause of cancer-related mortalities. The promising target of EGFR for lung cancer treatment has been identified, providing a potential avenue for more effective therapies. The purpose of the study was to design a library of 1843 coumarin-1,2,3-triazole hybrids and screen them based on a designed pharmacophore to identify potential inhibitors targeting EGFR in lung cancer with minimum or no side effects. Pharmacophore-based screening was carried out and 60 hits were obtained. To gain a better understanding of the binding interactions between the compounds and the targeted receptor, molecular docking was conducted on the 60 screened compounds. In-silico ADME and toxicity studies were also conducted to assess the drug-likeness and safety of the identified compounds. The results indicated that coumarin-1,2,3-triazole hybrids COUM-0849, COUM-0935, COUM-0414, COUM-1335, COUM-0276, and COUM-0484 exhibit dock score of - 10.2, - 10.2, - 10.1, - 10.1, - 10, - 10 while reference molecule - 7.9 kcal/mol for EGFR (PDB ID: 4HJO) respectively. The molecular docking and molecular dynamics simulations revealed that the identified compounds formed stable interactions with the active site of EGFR, indicating their potential as inhibitors. The in-silico ADME and toxicity studies showed that the compounds had favorable drug-likeness properties and low toxicity, further supporting their potential as therapeutic agents. Finally, we performed DFT studies on the best-selected ligands to gain further insights into their electronic properties. The findings of this study provide important insights into the potential of coumarin-1,2,3-triazole hybrids as promising EGFR inhibitors for the management of lung cancer.

10.
Clin Exp Rheumatol ; 42(7): 1435-1441, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38372731

RESUMO

OBJECTIVES: GMCSF+T-cells may be involved in pathogenesis of rheumatoid arthritis (RA), and polyfunctionality may be a marker of pathogenicity. Although, higher frequencies of CD4+GMCSF+ T-cells have been reported, there are no data on CD8+GMCSF+ T-cells or polyfunctionality.Our objective was to enumerate frequencies of CD8+GMCSF+ T cells in RA blood and synovial fluid (SF), and assess their polyfunctionality, memory phenotype and cytotoxic ability. METHODS: This study included RA patients (blood samples,in some with paired synovial fluid (SF)), healthy controls (HC) (blood) and SpA patients (SF). In some RA patients' blood was sampled twice, before and 16-24 weeks after methotrexate (MTX) treatment. After mononuclear cell isolation from blood and SF, ex-vivo stimulation using PMA/Ionomycin was done, and cells were stained (surface and intracellular after permeabilisation/fixation). Subsequently, frequencies of GMCSF+CD8+ and CD4+ T-cells, polyfunctionality (TNFα, IFNγ, IL-17), phenotype (memory) and perforin/granzyme expression were assessed by flowcytometry. RESULTS: There was no significant difference in frequencies of GMCSF+CD8+ (3.7, 4.1%, p=0.540) or GMCSF+CD4+ T-cells (4.5, 5.2%, p=0.450) inblood of RA and HC. However, there was significant enrichment of both CD8+GMCSF+ (5.8, 3.9%, p=0.0045) and CD4+GMCSF+ (8.5, 4.5%, p=0.0008) T-cells inSF compared to blood in RA patients. Polyfunctional triple cytokine positive TNFα+IFNγ+GMCSF+CD8+T-cells (81, 36%, p=0.049) and CD4+T-cells (48, 32%, p=0.010) was also higher in SF compared to blood in RA. CD8+ T cells showed higher frequency of effector-memory phenotype and granzyme-B expression in RA-SF. On longitudinal follow-up, blood CD4+GMCSF+ T-cells significantly declined (4.6, 2.9%, p=0.0014) post-MTX. CONCLUSIONS: We report a novel finding of enrichment of CD8+GMCSF+ in addition to CD4+GMCSF+ T-cells in RA-SF. These cells showed higher polyfunctionality for TNFα and IFNγ, and effector memory phenotype suggesting their involvement in RA pathogenesis.


Assuntos
Artrite Reumatoide , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Interferon gama , Líquido Sinovial , Fator de Necrose Tumoral alfa , Humanos , Artrite Reumatoide/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Líquido Sinovial/imunologia , Líquido Sinovial/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Pessoa de Meia-Idade , Masculino , Feminino , Interferon gama/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Adulto , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Estudos de Casos e Controles , Idoso , Fenótipo , Antirreumáticos/uso terapêutico , Memória Imunológica , Metotrexato/uso terapêutico , Granzimas/metabolismo , Interleucina-17/metabolismo , Perforina/metabolismo , Resultado do Tratamento , Células T de Memória/imunologia , Células T de Memória/metabolismo , Citotoxicidade Imunológica
11.
Indian J Microbiol ; 63(4): 677-692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38031600

RESUMO

This study aimed to isolate and characterize probiotic Lactobacilli from human faecal samples of Jammu region of India and evaluation of their antioxidative properties. A total of 29 Lactobacillus strains were isolated and tested for their ability to withstand different pH levels, high concentrations of bile salt and lysozyme along with their adhesion ability to different hydrocarbons and auto-aggregation. Selected probiotic Lactobacillus isolates were further examined for their antioxidant potential using ABTS, DPPH methods, and the ability to scavenge superoxide and hydroxyl radicals. The results showed that Lactobacillus LpJ1 (7.93 ± 0.23) and LpJ5 (7.93 ± 0.59) had the highest cell viability at a pH of 2.5, while Lactobacillus LpJ16 (7.91 ± 0.48) had the highest resistance to bile salts. Many of the isolates also demonstrated good tolerance to lysozyme. The adhesion abilities of these isolates were characterized by cell surface hydrophobicity and auto aggregation which ranged between 50.32% to 77.8% and 51.02% to 78.95% respectively. In addition, Lactobacillus LpJ5 and LpJ8 showed excellent antioxidant activity. Based on these findings, the selected probiotic strains could be potential candidates for use in functional food to reduce oxidative stress.

12.
Indian J Nephrol ; 33(4): 277-282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781560

RESUMO

Background and Aim: Primary glomerular disease accounts for one-sixth of all chronic kidney diseases (CKDs) in India. We remain limited in our ability to effectively treat these conditions because of lack of understanding of the disease mechanisms and lack of predictors to identify the clinical course and therapeutic responsiveness. We propose to develop a network of investigators in glomerular diseases, collect information in a systematic fashion to understand the clinical outcomes, answer translational research questions better, and identify and recruit patients for clinical trials. Materials and Methods: This is a prospective, observational study. The Indian TrANslational GlomerulonephrItis BioLogy nEtwork (I-TANGIBLE) cohort will enroll patients (>18 years) with biopsy-proven minimal change disease (MCD), focal segmental glomerulonephritis (FSGS), membranous nephropathy (MN), IgA nephropathy (IgAN), or membranoproliferative glomerulonephritis (MPGN) (immune complex- and complement-mediated), with first biopsy taken within 2 years of enrollment. Patients with estimated glomerular filtration (eGFR) rate <15 ml/min/1.73 m2 for >3 months at the time of screening, kidney transplant or bone marrow transplant recipients, patients with active malignancy, and patients with active hepatitis B/C replication or human immunodeficiency virus (HIV)-I/II will be excluded. Clinical details including history, medication history and details, and family history will be obtained. Consenting patient's blood and urine samples will be collected and stored, aligned to their clinical follow-up. Expected Outcomes: The network will allow accurate ascertainment of disease burden of glomerular diseases across study sites, establishment of the treatment pattern of common glomerular diseases, investigation of medium- and long-term outcomes (remission, relapse, rate of eGFR decline), and building a suitable infrastructure to carry out clinical trials in primary glomerular disease.

13.
ACS Omega ; 8(37): 33543-33553, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744866

RESUMO

The study presently conducted focused on analyzing a solar-powered desalination setup that had a double slope. It can recycle blackish water into drinking water with solar energy. Not only does this result in a significant decrease in carbon emissions but it also represents an environmentally beneficial alternative that is particularly suited for arid locations that are lacking of electrical infrastructure. This system was equipped with a PVT system which makes the system self-sustainable and a CPC collector and implemented the use of aluminum oxide (Al2O3) nanoparticles to enhance its energy efficiency. Energy matrices, economic analysis, and life cycle conversion efficiency were evaluated. The study was conducted annually in New Delhi, with input data provided by IMD in Pune, India. MATLAB was used for the analytical calculations. Energy and exergy were utilized to determine the average annual energy output, which was found to be 8.5%. Additionally, the average energy payback time was calculated to be 16.16%, the average energy payback factor was 13.91%, and the average life cycle cost conversion efficiency was 7.15% higher. The proposed system demonstrated superior performance compared to the previous system in terms of annual yield, energy payback time (EPBT), efficiency of life cycle cost (LCCE), and factor of energy payback (EPBF). The hybrid system has the potential to meet the future demand for potable water and become self-sustainable.

14.
Comput Biol Chem ; 102: 107807, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587565

RESUMO

The current study reports synthesis of 2-aminoquinolines and 1-aminoisoquinolines derivatives and their characterization. Further, in vitro studies were conducted to determine antimicrobial activities. Compound 3 h showed maximum activity against B. subtilis (IC50: 0.10±0.02 µM) and E. coli (IC50: 0.13±0.01 µM) whereas compound 3i showed higher antimicrobial activity against E. coli (IC50: 0.11±0.01) and C. viswanathii (IC50: 0.10±0.05 µM). Safety profiles of the most potent derivatives were evaluated utilizing cell viability assay using RAW 264.7 and HeLa cell lines and in vitro hemolytic assay was carried out freshly isolated RBC from healthy rat. Furthermore, in silico studies, like molecular docking, binding free energy calculations and ADME predictions were done to get the best lead candidates. Additionally, molecular dynamic simulation for 100 ns was performed to know stability of protein and ligand complex. The active compounds were found to be non-toxic and non-hemolytic and hold great promise to become newer antimicrobial agents.


Assuntos
Anti-Infecciosos , Antineoplásicos , Humanos , Ratos , Animais , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Antineoplásicos/química , Células HeLa , Aminoquinolinas , Escherichia coli , Anti-Infecciosos/farmacologia , Estrutura Molecular
15.
Int J Biol Macromol ; 229: 684-695, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36603714

RESUMO

Polymeric magnetic nanoparticles have shown higher efficacy in cancer diagnosis and treatment than conventional chemotherapies. Lignin is an abundantly available natural polymer that can be selectively modified using a rapidly expanding toolkit of biocatalytic and chemical reactions to yield 'intelligent' theranostic-nanoprobes. We aim to valorize lignin to develop a natural polymeric-magnetic-nano-system for the targeted delivery of methotrexate. In the current study, we synthesized nanoparticles of lignin and iron oxide with methotrexate using a new approach of anti-solvent precipitation with ultrasonication. The ensuing nanoparticles are magnetic, smooth, polyhedral with characteristic dimension of 110-130 nm. The drug loading and encapsulation efficiencies were calculated to be 66.06 % and 64.88 %, respectively. The nanoparticles exhibit a concentration-dependent release of methotrexate for the initial 24 h, followed by sustained release. Moreover, formulation is non-hemolytic and scavenges radicals owing to the antioxidant property of lignin. Additionally, methotrexate delivered using the nanoparticles exhibited higher cytotoxicity in cellular-viability assays employing breast cancer and macrophage cell lines compared to the pure form of the drug. Synergistic action of lignin, iron oxide, and methotrexate contribute to enhanced caspase-3 activity and reduced glutathione levels in the breast cancer cells, as well as elevated internalization of the drug on account of increased receptor-mediated endocytosis.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Metotrexato/química , Lignina , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Neoplasias da Mama/tratamento farmacológico , Polímeros
16.
Sci Rep ; 13(1): 141, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599872

RESUMO

We investigated the effect of two dosing regimens of oral iron on iron status and hematological parameters in patients with CKD. In this single center, open label, randomized, active controlled clinical trial, stable adult patients with CKD stage G3-4 with percentage transferrin saturation (%TSAT) ≤ 30% and serum ferritin ≤ 500 ng/ml were eligible. Participants were randomized to receive either 100 mg of ferrous ascorbate once daily (OD group) or 100 mg of ferrous ascorbate twice daily (BD group, total daily dose 200 mg). The primary outcome was change in %TSAT between groups over 12 weeks. The secondary outcomes were changes in other iron status and hematological parameters, serum interleukin-6 (IL-6) and hepcidin. 80 participants were enrolled out of which 76 completed the study. Change in %TSAT was not significantly different between groups (ß = - 1.43, 95% CI - 3.99 to 1.12, BD group as reference). The rise in serum ferritin was less in the OD group as compared to BD group (ß = - 0.36, 95% CI - 0.61 to - 0.10) whereas MCHC increased in the OD group as compared to decrease in the BD group (ß = 0.37, 95% CI 0.067-0.67). These observations need exploration to ascertain the impact of different oral iron dosing strategies in CKD.


Assuntos
Anemia Ferropriva , Insuficiência Renal Crônica , Adulto , Humanos , Anemia Ferropriva/tratamento farmacológico , Ferritinas , Ferro/metabolismo , Ferro/uso terapêutico , Insuficiência Renal Crônica/complicações , Ácido Ascórbico/metabolismo , Ácido Ascórbico/uso terapêutico
17.
Colloids Surf B Biointerfaces ; 222: 113113, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36566688

RESUMO

Owing to their tolerance to antibiotics, bacterial biofilms continue to pose a threat to mankind and are leading cause for non-healing of burn wounds. Within the biofilm matrix, antibiotics become functionally inactive due to restricted penetration and enzymatic degradation leading to rise of antimicrobial resistance. The objective of present investigation was to develop and characterize levofloxacin (LFX) loaded clove oil nanoscale emulgel (LFX-NE gel) and evaluate its in vivo therapeutic efficacy in Pseudomonas aeruginosa biofilm infected burn wound in mice. The optimized emulgel was found to possess good texture profile and showed shear thinning behavior. In vitro release study demonstrated complete drug release in 8 h and emulgel was found to be stable for 3 months at 25 °C and 40 °C. In vivo study revealed biofilm dispersal, complete wound closure, re-epithelialization and collagen deposition by LFX-NE gel in comparison to various control groups. LFX-NE gel was able to clear the infection within 7 days of treatment and promote wound healing as well. Therefore, administration of LFX-incorporated NE gel could be a beneficial treatment strategy for P. aeruginosa biofilm-infected burn wounds.


Assuntos
Queimaduras , Infecções por Pseudomonas , Infecção dos Ferimentos , Camundongos , Animais , Levofloxacino/farmacologia , Pseudomonas aeruginosa , Óleo de Cravo/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/microbiologia , Queimaduras/tratamento farmacológico , Queimaduras/microbiologia , Cicatrização , Infecções por Pseudomonas/tratamento farmacológico
18.
Sci Rep ; 12(1): 13225, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918463

RESUMO

Acute kidney injury (AKI) increases the risk of morbidity, mortality, and progression to chronic kidney disease (CKD). There are few data on the risk of CKD following community-acquired AKI (CA-AKI) and its predictors from developing countries. We evaluated the association of a panel of serum and urine biomarkers at the time of hospital discharge with 4-month renal outcome in CA-AKI. Patients of either sex, aged between 18 and 70 years, with no underlying CKD, and with CA-AKI were recruited at the time of discharge from hospital in this prospective observational study. Levels of serum and urine biomarkers were analyzed and association between these markers and development of CKD, defined as eGFR < 60 ml/min/1.73 m2 or dialysis dependence at 4 month after discharge, were analyzed using multivariate logistic regression analysis and penalized least absolute shrinkage and selection operator logistic regression. Out of a total 126 patients followed up for 4 months, 25 developed CKD. Those who developed CKD were older (p = 0.008), had higher serum creatinine (p < 0.001) and lower serum albumin (p = 0.001) at discharge. Adjusted logistic regression showed that each 10% increase in standardized serum myo-inositol oxygenase (MIOX) level increased the odds of progression to CKD by 13.5%. With 10% increase in standardized urine Neutrophil gelatinase-associated lipocalin (NGAL), serum creatinine and urine protein creatinine ratio (uPCR), increase in the odds of progression to CKD was 10.5%, 9.6% and 8%, respectively. Multivariable logistic model including serum MIOX, discharge serum creatinine and discharge uPCR, was able to predict the progression of CKD [AUC ROC 0.88; (95% CI 0.81, 0.95)]. High level serum MIOX levels at the time of discharge from hospital are associated with progression to CKD in patients with CA-AKI.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Injúria Renal Aguda/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores , Creatinina , Hospitais , Humanos , Inositol Oxigenase/metabolismo , Lipocalina-2/urina , Pessoa de Meia-Idade , Alta do Paciente , Diálise Renal , Insuficiência Renal Crônica/complicações , Adulto Jovem
19.
Environ Sci Pollut Res Int ; 29(32): 49465-49477, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35661300

RESUMO

In the present research work, the effect of operating parameters such as molar ratio (3:1-7:1), catalyst concentration (0.5-1.5%), reaction time (5-25 min), and operating pressure (0-4 bar) on the rate of biodiesel conversion percentage for the transesterification reaction using hydrodynamic cavitation (HC) has been studied. Response surface methodology (RSM) and genetic algorithms (GA) were used to find the best condition. The best conditions for biodiesel generation were a molar ratio of 6.5:1, a catalyst concentration of 1.301 wt.%, a reaction period of 11.5 min, and operating pressure of 3.6 bar. The maximum yield of biodiesel obtained under optimal conditions was 97.3%. The reaction time for biodiesel produced by HC under similar conditions as the conventional technique was reduced by 85%. The HC approach is preferable to the conventional method due to its shorter processing time.


Assuntos
Biocombustíveis , Microalgas , Algoritmos , Catálise , Esterificação , Hidrodinâmica , Óleos de Plantas
20.
Microbiol Immunol ; 66(6): 277-291, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35462444

RESUMO

Respiratory diseases are responsible for a greater mortality rate around the world. Viral or bacterial infections in the respiratory tract have been identified as major causative agents for death and disability among the population. Respiratory tract infections (RTIs) cause severe respiratory ailments starting from coldlike symptoms, eventually affecting the lungs and other viscera, and are mainly categorized into two types depending on the affected area: upper RTIs and lower RTIs. Respiratory viruses belong to several viral families such as influenza virus, enterovirus, adenovirus, respiratory syncytial virus, and recently severe acute respiratory syndrome coronavirus 2. Studies have indicated that people with good immune functions are less prone to respiratory infections and also their recovery rate is quicker. Innate and acquired immune systems actively participate in the recognition and elimination of the pathogenic agents. In the present context, the potential of probiotics is recognized as viable microorganisms that support the balance of the beneficial microbial population in the gastrointestinal tract and promote host immunity. The probiotics have long been known to regulate bodily immune functions and have been used against general RTIs such as cough, pharyngitis, laryngitis, pneumonia, and asthma. In addition, intervention with probiotics could directly affect the composition of the gut microbiota that have been shown to palliate respiratory diseases by modulating pulmonary immune activities through the gut-lung axis, and therefore, probiotics could become an alternative therapeutic approach for RTIs.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Probióticos , Infecções Respiratórias , Humanos , Probióticos/uso terapêutico , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/prevenção & controle , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA