Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Pathol ; 27(6): 748-769, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27608278

RESUMO

The brains of 10 Japanese patients with adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) encompassing hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD) and eight Japanese patients with Nasu-Hakola disease (N-HD) and five age-matched Japanese controls were examined neuropathologically with special reference to lesion staging and dynamic changes of microglial subsets. In both diseases, the pathognomonic neuropathological features included spherically swollen axons (spheroids and globules), axon loss and changes of microglia in the white matter. In ALSP, four lesion stages based on the degree of axon loss were discernible: Stage I, patchy axon loss in the cerebral white matter without atrophy; Stage II, large patchy areas of axon loss with slight atrophy of the cerebral white matter and slight dilatation of the lateral ventricles; Stage III, extensive axon loss in the cerebral white matter and dilatation of the lateral and third ventricles without remarkable axon loss in the brainstem and cerebellum; Stage IV, devastated cerebral white matter with marked dilatation of the ventricles and axon loss in the brainstem and/or cerebellum. Internal capsule and pontine base were relatively well preserved in the N-HD, even at Stage IV, and the swollen axons were larger with a higher density in the ALSP. Microglial cells immunopositive for CD68, CD163 or CD204 were far more obvious in ALSP, than in N-HD, and the shape and density of the cells changed in each stage. With progression of the stage, clinical symptoms became worse to apathetic state, and epilepsy was frequently observed in patients at Stages III and IV in both diseases. From these findings, it is concluded that (i) shape, density and subsets of microglia change dynamically along the passage of stages and (ii) increase of IBA-1-, CD68-, CD163- and CD204-immunopositive cells precedes loss of axons in ALSP.


Assuntos
Leucoencefalopatias/patologia , Lipodistrofia/patologia , Osteocondrodisplasias/patologia , Panencefalite Esclerosante Subaguda/patologia , Adulto , Atrofia/patologia , Autopsia , Axônios/patologia , Encéfalo/patologia , Feminino , Humanos , Japão , Leucoencefalopatias/diagnóstico , Lipodistrofia/diagnóstico , Masculino , Microglia/patologia , Pessoa de Meia-Idade , Neuroglia/patologia , Osteocondrodisplasias/diagnóstico , Panencefalite Esclerosante Subaguda/diagnóstico , Substância Branca/patologia
2.
PLoS One ; 7(12): e51539, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236515

RESUMO

Sepsis is a major clinical challenge and septic encephalopathy is its nasty complication. The pathogenesis and underlying mechanisms of septic encephalopathy are not well understood. This study sought to fully characterize sepsis-associated biochemical and histopathological changes in brains of mice after cecal ligation and puncture, regarded as a highly clinically relevant animal model of polymicrobial sepsis. Real-time PCR analysis showed that gene expression levels of proinflammatory cytokines, including tumor necrosis factor-α and interleukin-1ß, were significantly up-regulated in brain tissues from septic mice, but to a much lesser extent when compared with those in peripheral tissues such as lungs. Blood-brain barrier (BBB) permeability was significantly increased in septic mice, as determined by the measurement of sodium fluorescein and Evans blue content. Sepsis resulted in increases in NADPH oxidase activity and expression of p47(phox) and p67(phox) and up-regulation of inducible nitric oxide (NO) synthase in brains, indicating that superoxide, produced by NADPH oxidase, reacts with NO to form peroxynitrite, that maybe lead to the loss of BBB integrity. Light and electron microscopic examination of septic mouse brain showed serious neuronal degeneration, as indicated by hyperchromatic, shrunken, pyknotic, and electron-dense neurons. These histopathological changes were prevented by treatment with the free radical scavenger edaravone. Together, these results suggest that sepsis can lead to rapid neurodegenerative changes in brains via free radical species production and possibly subsequent injury to the BBB. We may also provide a potentially useful therapeutic tool for treating septic encephalopathy.


Assuntos
Antipirina/análogos & derivados , Sequestradores de Radicais Livres/uso terapêutico , Regulação da Expressão Gênica/imunologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/prevenção & controle , Sepse/complicações , Animais , Antipirina/uso terapêutico , Barreira Hematoencefálica/metabolismo , Ceco/lesões , Citocinas/metabolismo , Edaravone , Azul Evans , Fluoresceína , Ligadura , Camundongos , Microscopia Eletrônica , NADPH Oxidases/metabolismo , Doenças Neurodegenerativas/patologia , Óxido Nítrico Sintase Tipo II/biossíntese , Fosfoproteínas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sepse/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA