Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 10(23): 2252-2269, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-31040917

RESUMO

Immune checkpoint inhibitors (CPIs) are associated with a number of immune-related adverse events and low response rates. We provide preclinical evidence for use of a retroviral replicating vector (RRV) selective to cancer cells, to deliver CPI agents that may circumvent such issues and increase efficacy. An RRV, RRV-scFv-PDL1, encoding a secreted single chain variable fragment targeting PD-L1 can effectively compete with PD-1 for PD-L1 occupancy. Cell binding assays showed trans-binding activity on 100% of cells in culture when infection was limited to 5% RRV-scFv-PDL1 infected tumor cells. Further, the ability of scFv PD-L1 to rescue PD-1/PD-L1 mediated immune suppression was demonstrated in a co-culture system consisting of human-derived immune cells and further demonstrated in several syngeneic mouse models including an intracranial tumor model. These tumor models showed that tumors infected with RRV-scFv-PD-L1 conferred robust and durable immune-mediated anti-tumor activity comparable or superior to systemically administered anti-PD-1 or anti PD-L1 monoclonal antibodies. Importantly, the nominal level of scFv-PD-L1 detected in serum is ∼50-150 fold less than reported for systemically administered therapeutic antibodies targeting immune checkpoints. These results support the concept that RRV-scFv-PDL1 CPI strategy may provide an improved safety and efficacy profile compared to systemic monoclonal antibodies of currently approved therapies.

2.
Mol Ther Oncolytics ; 8: 14-26, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29322091

RESUMO

Treatment of tumors with Toca 511, a gamma retroviral replicating vector encoding cytosine deaminase, followed by 5-fluorocytosine (5-FC) kills tumors by local production of 5-fluorouracil (5-FU). In brain tumor models, this treatment induces systemic anti-tumor immune responses and long-term immune-mediated survival. Phase 1 Toca 511 and Toca FC (extended-release 5-FC) clinical trials in patients with recurrent high-grade glioma show durable complete responses and promising survival data compared to historic controls. The work described herein served to expand on our earlier findings in two models of metastatic colorectal carcinoma (mCRC). Intravenous (i.v.) delivery of Toca 511 resulted in substantial tumor-selective uptake of vector into metastatic lesions. Subsequent treatment with 5-FC resulted in tumor shrinkage, improved survival, and immune memory against future rechallenge with the same CT26 CRC cell line. Similar results were seen in a brain metastasis model of mCRC. Of note, 5-FC treatment resulted in a significant decrease in myeloid-derived suppressor cells (MDSCs) in mCRC tumors in both the liver and brain. These results support the development of Toca 511 and Toca FC as a novel immunotherapeutic approach for patients with mCRC. A phase 1 study of i.v. Toca 511 and Toca FC in solid tumors, including mCRC, is currently underway (NCT02576665).

3.
Hum Gene Ther ; 29(4): 437-451, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29216761

RESUMO

Toca 511, a retroviral replicating vector (RRV), uses an internal ribosomal entry site (IRES) to express an optimized yeast cytosine deaminase (yCD2), which converts 5-fluorocytosine to 5-fluorouracil. This configuration is genetically stable in both preclinical mouse models and human clinical trials. However, the use of IRES (∼600 bp) restricts choices of therapeutic transgenes due to limits in RRV genome size. This study replaced IRES with 2A peptides derived from picornaviruses with or without a GSG linker. The data show that GSG-linked 2A (g2A) peptide resulted in higher polyprotein separation efficiency than non-GSG linked 2A peptide. The study also shows that RRV can tolerate insertion of two separate 2A peptides to allow expression of two transgenes without compromising the assembly and function of the virus in addition to insertion of a single 2A peptide to confirm genetic stability with yCD2, green fluorescent protein, and HSV-1 thymidine kinase. In a parallel comparison of the RRV-IRES-yCD2 and RRV-g2A-yCD2 configurations, the study shows the yCD2 protein expressed from RRV-g2A-yCD2 has higher activity, resulting in a higher survival benefit in an intracranial tumor mouse model. These data enable a wider range of potential product candidates that could be developed using the RRV platform.


Assuntos
Neoplasias Encefálicas/terapia , Terapia Genética , Vetores Genéticos , Sítios Internos de Entrada Ribossomal/genética , Animais , Neoplasias Encefálicas/genética , Citosina Desaminase/genética , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Peptídeos/genética , Picornaviridae/genética , Replicação Viral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Oncotarget ; 8(49): 85997-86010, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29156772

RESUMO

Mechanisms of castration-resistant prostate cancer (CRPC) are not well understood, thus hindering rational-based drug design. Activation of STAT3/5A, key components of the JAK/STAT pathway, is implicated in aggressive PC, yet their clinical relevance in CRPC remains elusive. Here, we evaluated the possible role of STAT3/5A in CRPC using immunological, quantitative mRNA expression profiling, and pharmacological methods. We observed a strong nuclear immunoreactivity for STAT3 and STAT5A in 93% (n=14/15) and 80% (n=12/15) of CRPC cases, respectively, compared with benign prostatic hyperplasia (BPH). We demonstrated that PC cells express varying levels of STAT3 and STAT5A transcripts. In addition, we demonstrate that pimozide, a psychotropic drug and an indirect inhibitor of STAT5, attenuated PC cells growth, and induced apoptosis in a dose-dependent manner. Furthermore, our analysis of the PC public data revealed that the STAT3/5A genes were frequently amplified in metastatic CRPC. These findings suggest that STAT3/5A potentially serves as a predictive biomarker to evaluate the therapeutic efficacy of a cancer drug targeting the JAK/STAT pathway. Since the JAK/STAT and AR pathways are suggested to be functionally synergistic, inhibition of the JAK/STAT signaling alone or together with AR may lead to a novel treatment modality for patients with advanced PC.

5.
PLoS One ; 12(9): e0184590, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28880957

RESUMO

Dysregulation of MST1/STK4, a key kinase component of the Hippo-YAP pathway, is linked to the etiology of many cancers with poor prognosis. However, how STK4 restricts the emergence of aggressive cancer remains elusive. Here, we investigated the effects of STK4, primarily localized in the cytoplasm, lipid raft, and nucleus, on cell growth and gene expression in aggressive prostate cancer. We demonstrated that lipid raft and nuclear STK4 had superior suppressive effects on cell growth in vitro and in vivo compared with cytoplasmic STK4. Using RNA sequencing and bioinformatics analysis, we identified several differentially expressed (DE) genes that responded to ectopic STK4 in all three subcellular compartments. We noted that the number of DE genes observed in lipid raft and nuclear STK4 cells were much greater than cytoplasmic STK4. Our functional annotation clustering showed that these DE genes were commonly associated with oncogenic pathways such as AR, PI3K/AKT, BMP/SMAD, GPCR, WNT, and RAS as well as unique pathways such as JAK/STAT, which emerged only in nuclear STK4 cells. These findings indicate that MST1/STK4/Hippo signaling restricts aggressive tumor cell growth by intersecting with multiple molecular pathways, suggesting that targeting of the STK4/Hippo pathway may have important therapeutic implications for cancer.


Assuntos
Neoplasias da Próstata/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Biologia Computacional , Citoplasma/metabolismo , Imunofluorescência , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Próstata/metabolismo , Próstata/patologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
6.
Neuro Oncol ; 18(10): 1390-401, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27166379

RESUMO

BACKGROUND: Toca 511, a gamma retroviral replicating vector encoding cytosine deaminase, used in combination with 5-fluorocytosine (5-FC) kills tumor by local production of 5-fluorouracil (5-FU), inducing local and systemic immunotherapeutic response resulting in long-term survival after cessation of 5-FC. Toca 511 and Toca FC (oral extended-release 5-FC) are under investigation in patients with recurrent high-grade glioma. Lomustine is a treatment option for patients with high-grade glioma. METHODS: We investigated the effects of lomustine combined with Toca 511 + 5-FC in syngeneic orthotopic glioma models. Safety and survival were evaluated in immune-competent rat F98 and mouse Tu-2449 models comparing Toca 511 + 5-FC to lomustine + 5-FC or the combination of Toca 511 + 5-FC + lomustine. After intracranial implantation of tumor, Toca 511 was delivered transcranially followed by cycles of intraperitoneal 5-FC with or without lomustine at the first or fourth cycle. RESULTS: Coadministration of 5-FC with lomustine was well tolerated. In F98, combination Toca 511 + 5-FC and lomustine increased median survival, but "cures" were not achieved. In Tu-2449, combination Toca 511 + 5-FC and lomustine increased median survival and resulted in high numbers of cure. Rejection of tumor rechallenge occurred after treatment with Toca 511 + 5-FC or combined with lomustine, but not with lomustine + 5-FC. Mixed lymphocyte-tumor cell reactions using splenocytes from cured animals showed robust killing of target cells in an effector:target ratio-dependent manner with Toca 511 + 5-FC and Toca 511 + 5-FC + lomustine day 10. CONCLUSION: The combination of Toca 511 + 5-FC and lomustine shows promising efficacy with no additive toxicity in murine glioma models. Immunotherapeutic responses resulting in long-term survival were preserved despite lomustine-related myelosuppression.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/patologia , Citosina Desaminase/administração & dosagem , Terapia Genética/métodos , Glioblastoma/patologia , Animais , Citosina Desaminase/genética , Modelos Animais de Doenças , Feminino , Flucitosina/administração & dosagem , Vetores Genéticos , Imuno-Histoquímica , Imunoterapia/métodos , Lomustina/administração & dosagem , Masculino , Camundongos , Ratos , Ratos Endogâmicos F344 , Retroviridae
7.
Clin Cancer Res ; 20(6): 1555-1565, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24501391

RESUMO

PURPOSE: Glioblastoma multiforme is the most common primary brain cancer in adults. Chemotherapy with temozolomide (TMZ) significantly prolongs the survival of patients with glioblastoma multiforme. However, the three-year survival is still approximately 5%. Herein, we combined intratumoral administration of an adenoviral vector expressing Flt3L (Ad-Flt3L) with systemic temozolomide to assess its impact on therapeutic efficacy. EXPERIMENTAL DESIGN: Wild-type or immunodeficient mice bearing intracranial glioblastoma multiforme or metastatic melanoma were treated with an intratumoral injection of Ad-Flt3L alone or in combination with the conditionally cytotoxic enzyme thymidine kinase (Ad-TK), followed by systemic administration of ganciclovir and temozolomide. We monitored survival and measured the tumor-infiltrating immune cells. RESULTS: Although treatment with temozolomide alone led to a small improvement in median survival, when used in combination with gene therapy-mediated immunotherapy, it significantly increased the survival of tumor-bearing mice. The antitumor effect was further enhanced by concomitant intratumoral administration of Ad-TK, leading to 50% to 70% long-term survival in all tumor models. Although temozolomide reduced the content of T cells in the tumor, this did not affect the therapeutic efficacy. The antitumor effect of Ad-Flt3L+Ad-TK+TMZ required an intact immune system because the treatment failed when administered to knock out mice that lacked lymphocytes or dendritic cells. CONCLUSIONS: Our results challenge the notion that chemotherapy leads to a state of immune-suppression which impairs the ability of the immune system to mount an effective antitumor response. Our work indicates that temozolomide does not inhibit antitumor immunity and supports its clinical implementation in combination with immune-mediated therapies.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/patologia , Dacarbazina/análogos & derivados , Glioblastoma/patologia , Imunoterapia/métodos , Adenoviridae , Animais , Dacarbazina/uso terapêutico , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Temozolomida , Timidina Quinase/genética , Timidina Quinase/imunologia
8.
Neoplasia ; 14(8): 757-70, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22952428

RESUMO

Adenovirus-mediated delivery of the immune-stimulatory cytokine Flt3L and the conditionally cytotoxic thymidine kinase (TK) induces tumor regression and long-term survival in preclinical glioma (glioblastoma multiforme [GBM]) models. Flt3L induces expansion and recruitment of plasmacytoid dendritic cells (pDCs) into the brain. Although pDCs can present antigen and produce powerful inflammatory cytokines, that is, interferon α (IFN-α), their role in tumor immunology remains debated. Thus, we studied the role of pDCs and IFN-α in Ad.TK/GCV+ Ad.Flt3L-mediated anti-GBM therapeutic efficacy. Our data indicate that the combined gene therapy induced recruitment of plasmacytoid DCs (pDCs) into the tumor mass; which were capable of in vivo phagocytosis, IFN-α release, and T-cell priming. Thus, we next used either pDCs or an Ad vector encoding IFN-α delivered within the tumor microenvironment. When rats were treated with Ad.TK/GCV in combination with pDCs or Ad-IFN-α, they exhibited 35% and 50% survival, respectively. However, whereas intracranial administration of Ad.TK/GCV + Ad.Flt3L exhibited a high safety profile, Ad-IFN-α led to severe local inflammation, with neurologic and systemic adverse effects. To elucidate whether the efficacy of the immunotherapy was dependent on IFN-α-secreting pDCs, we administered an Ad vector encoding B18R, an IFN-α antagonist, which abrogated the antitumoral effect of Ad.TK/GCV + Ad.Flt3L. Our data suggest that IFN-α release by activated pDCs plays a critical role in the antitumor effect mediated by Ad.TK/GCV + Ad.Flt3L. In summary, taken together, our results demonstrate that pDCs mediate anti-GBM therapeutic efficacy through the production of IFN-α, thus manipulation of pDCs constitutes an attractive new therapeutic target for the treatment of GBM.


Assuntos
Neoplasias Encefálicas/imunologia , Células Dendríticas/imunologia , Glioblastoma/imunologia , Interferon-alfa/imunologia , Microambiente Tumoral , Adenoviridae/genética , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Terapia Genética , Glioblastoma/patologia , Glioblastoma/terapia , Imunoterapia , Ativação Linfocitária , Teste de Cultura Mista de Linfócitos , Linfócitos do Interstício Tumoral/imunologia , Proteínas de Membrana/genética , Ratos , Linfócitos T/imunologia , Timidina Quinase/genética
9.
Neurotherapeutics ; 9(4): 827-43, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22996231

RESUMO

Immune-mediated gene therapy using adenovirus expressing Flt3 ligand and thymidine kinase followed by ganciclovir administration (Flt3/TK) effectively elicits tumor regression in preclinical glioma models. Herein, we assessed new strategies to optimize Flt3L/TK therapeutic efficacy in a refractory RG2 orthotopic glioblastoma model. Specifically, we aimed to optimize the therapeutic efficacy of Flt3L/TK treatment in the RG2 model by overexpressing the following genes within the brain tumor microenvironment: 1) a TK mutant with enhanced cytotoxicity (SR39 mutant TK), 2) Flt3L-IgG fusion protein that has a longer half-life, 3) CD40L to stimulate DC maturation, 4) T helper cell type 1 polarizing dendritic cell cytokines interleukin-12 or C-X-C motif ligand 10 chemokine (CXCL)-10, 5) C-C motif ligand 2 chemokine (CCL2) or C-C motif ligand 3 chemokine (CCL3) to enhance dendritic cell recruitment into the tumor microenvironment, 6) T helper cell type 1 cytokines interferon-γ or interleukin-2 to enhance effector T-cell functions, and 7) IκBα or p65RHD (nuclear factor kappa-B [NF-κB] inhibitors) to suppress the function of Foxp3+ Tregs and enhanced effector T-cell functions. Anti-tumor immunity and tumor specific effector T-cell functions were assessed by cytotoxic T lymphocyte assay and intracellular IFN-γ staining. Our data showed that overexpression of interferon-γ or interleukin-2, or inhibition of the nuclear factor kappa-B within the tumor microenvironment, enhanced cytotoxic T lymphocyte-mediated immune responses and successfully extended the median survival of rats bearing intracranial RG2 when combined with Flt3L/TK. These findings indicate that enhancement of T-cell functions constitutes a critical therapeutic target to overcome immune evasion and enhance therapeutic efficacy for brain cancer. In addition, our study provides novel targets to be used in combination with immune-therapeutic strategies for glioblastoma, which are currently being tested in the clinic.


Assuntos
Neoplasias Encefálicas/terapia , Terapia Genética/métodos , Glioblastoma/terapia , Imunoterapia/métodos , Transdução de Sinais , Linfócitos T/imunologia , Adenoviridae/genética , Animais , Antivirais/uso terapêutico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Ganciclovir/uso terapêutico , Vetores Genéticos , Glioblastoma/genética , Glioblastoma/imunologia , Humanos , Interleucina-2/imunologia , Linfócitos do Interstício Tumoral/imunologia , Proteínas de Membrana/uso terapêutico , NF-kappa B/imunologia , Ratos , Proteínas Recombinantes/uso terapêutico , Timidina Quinase/uso terapêutico , Microambiente Tumoral/imunologia
10.
J Biol Chem ; 287(28): 23698-709, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22619175

RESUMO

Mst1/Stk4, a hippo-like serine-threonine kinase, is implicated in many cancers, including prostate cancer. However, the mechanisms regulating Mst1 remain obscure. Here, we characterized the effects of phospho-Thr-120 on Mst1 in prostate cancer cells. We demonstrated that phospho-Thr-120 did not alter the nuclear localization or cleavage of Mst1 in a LNCaP or castration-resistant C4-2 prostate tumor cell model, as revealed by a mutagenesis approach. Phospho-Thr-120 appeared to be specific to cancer cells and predominantly localized in the nucleus. In contrast, phospho-Thr-183, a critical regulator of Mst1 cell death, was exclusively found in the cytoplasm. As assessed by immunohistochemistry, a similar distribution of phospho-Mst1-Thr-120/Thr-183 was also observed in a prostate cancer specimen. In addition, the blockade of PI3K signaling by a small molecule inhibitor, LY294002, increased cytoplasmic phospho-Mst1-Thr-183 without having a significant effect on nuclear phospho-Mst1-Thr-120. However, the attenuation of mammalian target of rapamycin (mTOR) activity by a selective pharmacologic inhibitor, Ku0063794 or CCI-779, caused the up-regulation of nuclear phospho-Mst1-Thr-120 without affecting cytoplasmic phospho-Mst1-Thr-183. This suggests that PI3K and mTOR pathway signaling differentially regulate phospho-Mst1-Thr-120/Thr-183. Moreover, mutagenesis and RNAi data revealed that phospho-Thr-120 resulted in C4-2 cell resistance to mTOR inhibition and reduced the Mst1 suppression of cell growth and androgen receptor-driven gene expression. Collectively, these findings indicate that phospho-Thr-120 leads to the loss of Mst1 functions, supporting cancer cell growth and survival.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Treonina/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cromonas/farmacologia , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Nus , Morfolinas/farmacologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Serina-Treonina Quinases/genética , Pirimidinas/farmacologia , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Sirolimo/análogos & derivados , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Transplante Heterólogo , Carga Tumoral
11.
Neoplasia ; 13(10): 947-60, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028620

RESUMO

We have demonstrated that modifying the tumor microenvironment through intratumoral administration of adenoviral vectors (Ad) encoding the conditional cytotoxic molecule, i.e., HSV1-TK and the immune-stimulatory cytokine, i.e., fms-like tyrosine kinase 3 ligand (Flt3L) leads to T-cell-dependent tumor regression in rodent models of glioblastoma. We investigated the role of B cells during immune-mediated glioblastoma multiforme regression. Although treatment with Ad-TK+Ad-Flt3L induced tumor regression in 60% of wild-type (WT) mice, it completely failed in B-cell-deficient Igh6(-/-) mice. Tumor-specific T-cell precursors were detected in Ad-TK+Ad-Flt3L-treated WT mice but not in Igh6(-/-) mice. The treatment also failed in WT mice depleted of total B cells or marginal zone B cells. Because we could not detect circulating antibodies against tumor cells and the treatment was equally efficient in WT mice and in mice with B-cell-specific deletion of Prdm 1 (encoding Blimp-1), in which B cells are present but unable to fully differentiate into antibody-secreting plasma cells, tumor regression in this model is not dependent on B cells' production of tumor antigen-specific immunoglobulins. Instead, B cells seem to play a role as antigen-presenting cells (APCs). Treatment with Ad-TK+Ad-Flt3L led to an increase in the number of B cells in the cervical lymph nodes, which stimulated the proliferation of syngeneic T cells and induced clonal expansion of antitumor T cells. Our data show that B cells act as APCs, playing a critical role in clonal expansion of tumor antigen-specific T cells and brain tumor regression.


Assuntos
Linfócitos B/imunologia , Neoplasias Encefálicas/terapia , Terapia Genética/métodos , Glioblastoma/terapia , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Linfócitos B/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Citotoxicidade Imunológica/imunologia , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Herpesvirus Humano 1/enzimologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Fator 1 de Ligação ao Domínio I Regulador Positivo , Linfócitos T/metabolismo , Timidina Quinase/genética , Timidina Quinase/imunologia , Timidina Quinase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
12.
Anticancer Agents Med Chem ; 11(8): 729-38, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21707497

RESUMO

Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. GBM is very aggressive due to its poor cellular differentiation and invasiveness, which makes complete surgical resection virtually impossible. Therefore, GBM's invasive nature as well as its intrinsic resistance to current treatment modalities makes it a unique therapeutic challenge. Extensive examination of human GBM specimens has uncovered that these tumors overexpress a variety of receptors that are virtually absent in the surrounding non-neoplastic brain. Human GBMs overexpress receptors for cytokines, growth factors, ephrins, urokinase-type plasminogen activator (uPA), and transferrin, which can be targeted with high specificity by linking their ligands with highly cytotoxic molecules, such as Diptheria toxin and Pseudomonas exotoxin A. We review the preclinical development and clinical translation of targeted toxins for GBM. In view of the clinical experience, we conclude that although these are very promising therapeutic modalities for GBM patients, efforts should be focused on improving the delivery systems utilized in order to achieve better distribution of the immuno-toxins in the tumor/resection cavity. Delivery of targeted toxins using viral vectors would also benefit enormously from improved strategies for local delivery.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Imunotoxinas/administração & dosagem , Imunotoxinas/metabolismo , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos
13.
Curr Gene Ther ; 11(3): 155-80, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21453286

RESUMO

The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of 15-18 months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors.


Assuntos
Neoplasias Encefálicas/terapia , Terapia Genética/métodos , Glioma/terapia , Toxinas Biológicas/uso terapêutico , Animais , Neoplasias Encefálicas/genética , Terapia Combinada , Marcação de Genes , Glioma/genética , Humanos , Imunoterapia , Interferons/uso terapêutico , Interleucinas/uso terapêutico , Modelos Biológicos
14.
Discov Med ; 10(53): 293-304, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034670

RESUMO

Glioblastoma multiforme (GBM) is a deadly primary brain tumor in adults, with a median survival of ~12-18 months post-diagnosis. Despite recent advances in conventional therapeutic approaches, only modest improvements in median survival have been achieved; GBM usually recurs within 12 months post-resection, with poor prognosis. Thus, novel therapeutic strategies to target and kill GBM cells are desperately needed. Our group and others are pursuing virotherapy and gene therapy strategies for the treatment of GBM. In this review, we will discuss various virotherapy and gene therapy approaches for GBM currently under pre-clinical and clinical evaluation including direct or conditional cytotoxic, and/or immunostimulatory approaches. We also discuss cutting-edge technologies for drug/gene delivery and targeting brain tumors, including the use of stem cells as delivery platforms, the use of targeted immunotoxins, and the therapeutic potential of using GBM microvesicles to deliver therapeutic siRNAs or virotherapies. Finally, various animal models available to test novel GBM therapies are discussed.


Assuntos
Neoplasias Encefálicas/terapia , Terapia Genética/métodos , Glioblastoma/terapia , Terapia Viral Oncolítica/métodos , Terapias em Estudo/métodos , Adulto , Animais , Terapia Genética/tendências , Humanos , Modelos Biológicos , Terapia Viral Oncolítica/tendências , Terapias em Estudo/tendências
15.
Proc Natl Acad Sci U S A ; 107(46): 20021-6, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21030678

RESUMO

Restricting the cytotoxicity of anticancer agents by targeting receptors exclusively expressed on tumor cells is critical when treating infiltrative brain tumors such as glioblastoma multiforme (GBM). GBMs express an IL-13 receptor (IL13Rα2) that differs from the physiological IL4R/IL13R receptor. We developed a regulatable adenoviral vector (Ad.mhIL-4.TRE.mhIL-13-PE) encoding a mutated human IL-13 fused to Pseudomonas exotoxin (mhIL-13-PE) that specifically binds to IL13Rα2 to provide sustained expression, effective anti-GBM cytotoxicity, and minimal neurotoxicity. The therapeutic Ad also encodes mutated human IL-4 that binds to the physiological IL4R/IL13R without interacting with IL13Rα2, thus inhibiting potential binding of mhIL-13-PE to normal brain cells. Using intracranial GBM xenografts and syngeneic mouse models, we tested the Ad.mhIL-4.TRE.mhIL-13-PE and two protein formulations, hIL-13-PE used in clinical trials (Cintredekin Besudotox) and a second-generation mhIL-13-PE. Cintredekin Besudotox doubled median survival without eliciting long-term survival and caused severe neurotoxicity; mhIL-13-PE led to ∼40% long-term survival, eliciting severe neurological toxicity at the high dose tested. In contrast, Ad-mediated delivery of mhIL-13-PE led to tumor regression and long-term survival in over 70% of the animals, without causing apparent neurotoxicity. Although Cintredekin Besudotox was originally developed to target GBM, when tested in a phase III trial it failed to achieve clinical endpoints and revealed neurotoxicity. Limitations of Cintredekin Besudotox include its short half-life, which demanded frequent or continued administration, and binding to IL4R/IL13R, present in normal brain cells. These shortcomings were overcome by our therapeutic Ad, thus representing a significant advance in the development of targeted therapeutics for GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Citotoxinas/genética , Citotoxinas/uso terapêutico , Técnicas de Transferência de Genes , Terapia Genética , Glioma/tratamento farmacológico , Adenoviridae/genética , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Exotoxinas/genética , Exotoxinas/uso terapêutico , Vetores Genéticos/genética , Glioma/patologia , Humanos , Imunocompetência/imunologia , Interleucina-13/genética , Interleucina-13/uso terapêutico , Camundongos , Camundongos Nus , Mutação/genética , Neurotoxinas/toxicidade , Pseudomonas/metabolismo , Transgenes/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
16.
PLoS One ; 5(6): e11074, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20552015

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and carries a dismal prognosis. We have developed a conditional cytotoxic/immunotherapeutic approach using adenoviral vectors (Ads) encoding the immunostimulatory cytokine, human soluble fms-like tyrosine kinase 3 ligand (hsFlt3L) and the conditional cytotoxic molecule, i.e., Herpes Simplex Type 1- thymide kinase (TK). This therapy triggers an anti-tumor immune response that leads to tumor regression and anti-tumor immunological memory in intracranial rodent cancer models. We aim to test the efficacy of this immunotherapy in dogs bearing spontaneous GBM. In view of the controversy regarding the effect of human cytokines on dog immune cells, and considering that the efficacy of this treatment depends on hsFlt3L-stimulated dendritic cells (DCs), in the present work we tested the ability of Ad-encoded hsFlt3L to generate DCs from dog peripheral blood and compared its effects with canine IL-4 and GM-CSF. METHODOLOGY/PRINCIPAL FINDINGS: Our results demonstrate that hsFlT3L expressed form an Ad vector, generated DCs from peripheral blood cultures with very similar morphological and phenotypic characteristics to canine IL-4 and GM-CSF-cultured DCs. These include phagocytic activity and expression of CD11c, MHCII, CD80 and CD14. Maturation of DCs cultured under both conditions resulted in increased secretion of IL-6, TNF-alpha and IFN-gamma. Importantly, hsFlt3L-derived antigen presenting cells showed allostimulatory potential highlighting their ability to present antigen to T cells and elicit their proliferation. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that hsFlt3L induces the proliferation of canine DCs and support its use in upcoming clinical trials for canine GBM. Our data further support the translation of hsFlt3L to be used for dendritic cells' vaccination and gene therapeutic approaches from rodent models to canine patients and its future implementation in human clinical trials.


Assuntos
Neoplasias Encefálicas/veterinária , Células Dendríticas/imunologia , Doenças do Cão/terapia , Glioma/veterinária , Imunoterapia , Proteínas de Membrana/imunologia , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Proliferação de Células , Células Cultivadas , Doenças do Cão/imunologia , Cães , Vetores Genéticos , Glioma/imunologia , Glioma/terapia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Herpesvirus Humano 1/genética , Interleucina-4/administração & dosagem , Ativação Linfocitária , Proteínas de Membrana/genética , Fagocitose
17.
J Virol ; 84(12): 6007-17, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20375153

RESUMO

Glioblastoma multiforme (GBM) is a deadly primary brain tumor. Conditional cytotoxic/immune-stimulatory gene therapy (Ad-TK and Ad-Flt3L) elicits tumor regression and immunological memory in rodent GBM models. Since the majority of patients enrolled in clinical trials would exhibit adenovirus immunity, which could curtail transgene expression and therapeutic efficacy, we used high-capacity adenovirus vectors (HC-Ads) as a gene delivery platform. Herein, we describe for the first time a novel bicistronic HC-Ad driving constitutive expression of herpes simplex virus type 1 thymidine kinase (HSV1-TK) and inducible Tet-mediated expression of Flt3L within a single-vector platform. We achieved anti-GBM therapeutic efficacy with no overt toxicities using this bicistronic HC-Ad even in the presence of systemic Ad immunity. The bicistronic HC-Ad-TK/TetOn-Flt3L was delivered into intracranial gliomas in rats. Survival, vector biodistribution, neuropathology, systemic toxicity, and neurobehavioral deficits were assessed for up to 1 year posttreatment. Therapeutic efficacy was also assessed in animals preimmunized against Ads. We demonstrate therapeutic efficacy, with vector genomes being restricted to the brain injection site and an absence of overt toxicities. Importantly, antiadenoviral immunity did not inhibit therapeutic efficacy. These data represent the first report of a bicistronic vector platform driving the expression of two therapeutic transgenes, i.e., constitutive HSV1-TK and inducible Flt3L genes. Further, our data demonstrate no promoter interference and optimum gene delivery and expression from within this single-vector platform. Analysis of the efficacy, safety, and toxicity of this bicistronic HC-Ad vector in an animal model of GBM strongly supports further preclinical testing and downstream process development of HC-Ad-TK/TetOn-Flt3L for a future phase I clinical trial for GBM.


Assuntos
Adenoviridae/genética , Técnicas de Transferência de Genes , Glioma/genética , Glioma/terapia , Herpesvirus Humano 1/enzimologia , Timidina Quinase/uso terapêutico , Proteínas Virais/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/uso terapêutico , Adenoviridae/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação da Expressão Gênica , Terapia Genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glioma/metabolismo , Herpesvirus Humano 1/genética , Humanos , Ratos , Ratos Endogâmicos Lew , Timidina Quinase/genética , Timidina Quinase/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
18.
Immunology ; 129(1): 105-14, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19824920

RESUMO

Endodontic infections are polymicrobial infections resulting in bone destruction and tooth loss. The host response to these infections is complex, including both innate and adaptive mechanisms. Osteopontin (OPN), a secreted, integrin-binding protein, functions in the regulation of immune responses and enhancement of leucocyte migration. We have assessed the role of OPN in the host response to endodontic infection using a well-characterized mouse model. Periapical bone loss associated with endodontic infection was significantly more severe in OPN-deficient mice compared with wild-type 3 weeks after infection, and was associated with increased areas of inflammation. Expression of cytokines associated with bone loss, interleukin-1alpha (IL-1alpha) and RANKL, was increased 3 days after infection. There was little effect of OPN deficiency on the adaptive immune response to these infections, as there was no effect of genotype on the ratio of bacteria-specific immunoglobulin G1 and G2a in the serum of infected mice. Furthermore, there was no difference in the expression of cytokines associated with T helper type 1/type2 balance: IL-12, IL-10 and interferon-gamma. In infected tissues, neutrophil infiltration into the lesion area was slightly increased in OPN-deficient animals 3 days after infection: this was confirmed by a significant increase in expression of neutrophil elastase in OPN-deficient samples at this time-point. We conclude that OPN has a protective effect on polymicrobial infection, at least partially because of alterations in phagocyte recruitment and/or persistence at the sites of infection, and that this molecule has a potential therapeutic role in polymicrobial infections.


Assuntos
Infecções Bacterianas/imunologia , Elastase de Leucócito/biossíntese , Osteopontina/metabolismo , Perda do Osso Alveolar/genética , Animais , Infecções Bacterianas/sangue , Infecções Bacterianas/genética , Infecções Bacterianas/fisiopatologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Imunidade , Imunoglobulinas/sangue , Elastase de Leucócito/genética , Camundongos , Camundongos Knockout , Osteopontina/genética , Osteopontina/imunologia , Periodontite Periapical/genética , Pulpite , Ligante RANK/biossíntese , Ligante RANK/genética
19.
Clin Cancer Res ; 15(19): 6113-27, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19789315

RESUMO

PURPOSE: Glioblastoma multiforme is a deadly primary brain cancer. Because the tumor kills due to recurrences, we tested the hypothesis that a new treatment would lead to immunological memory in a rat model of recurrent glioblastoma multiforme. EXPERIMENTAL DESIGN: We developed a combined treatment using an adenovirus (Ad) expressing fms-like tyrosine kinase-3 ligand (Flt3L), which induces the infiltration of immune cells into the tumor microenvironment, and an Ad expressing herpes simplex virus-1-thymidine kinase (TK), which kills proliferating tumor cells in the presence of ganciclovir. RESULTS: This treatment induced immunological memory that led to rejection of a second glioblastoma multiforme implanted in the contralateral hemisphere and of an extracranial glioblastoma multiforme implanted intradermally. Rechallenged long-term survivors exhibited anti-glioblastoma multiforme-specific T cells and displayed specific delayed-type hypersensitivity. Using depleting antibodies, we showed that rejection of the second tumor was dependent on CD8(+) T cells. Circulating anti-glioma antibodies were observed when glioblastoma multiforme cells were implanted intradermally in naïve rats or in long-term survivors. However, rats bearing intracranial glioblastoma multiforme only exhibited circulating antitumoral antibodies upon treatment with Ad-Flt3L + Ad-TK. This combined treatment induced tumor regression and release of the chromatin-binding protein high mobility group box 1 in two further intracranial glioblastoma multiforme models, that is, Fisher rats bearing intracranial 9L and F98 glioblastoma multiforme cells. CONCLUSIONS: Treatment with Ad-Flt3L + Ad-TK triggered systemic anti-glioblastoma multiforme cellular and humoral immune responses, and anti-glioblastoma multiforme immunological memory. Release of the chromatin-binding protein high mobility group box 1 could be used as a noninvasive biomarker of therapeutic efficacy for glioblastoma multiforme. The robust treatment efficacy lends further support to its implementation in a phase I clinical trial.


Assuntos
Neoplasias Encefálicas/terapia , Citotoxicidade Imunológica/genética , Terapia Genética/métodos , Glioma/terapia , Imunidade Celular/genética , Imunidade Humoral/genética , Memória Imunológica/genética , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Genes Transgênicos Suicidas/genética , Genes Transgênicos Suicidas/fisiologia , Glioma/imunologia , Glioma/patologia , Humanos , Imunoterapia/métodos , Ativação Linfocitária/genética , Proteínas de Membrana/genética , Modelos Biológicos , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Ratos , Indução de Remissão/métodos , Timidina Quinase/genética , Carga Tumoral
20.
Curr Gene Ther ; 9(5): 409-21, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19860655

RESUMO

Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults. Despite significant advances in treatment and intensive research, the prognosis for patients with GBM remains poor. Therapeutic challenges for GBM include its invasive nature, the proximity of the tumor to vital brain structures often preventing total resection, and the resistance of recurrent GBM to conventional radiotherapy and chemotherapy. Gene therapy has been proposed as a useful adjuvant for GBM, to be used in conjunction with current treatment. Work from our laboratory has shown that combination of conditional cytotoxic with immunotherapeutic approaches for the treatment of GBM elicits regression of large intracranial tumor masses and anti-tumor immunological memory in syngeneic rodent models of GBM. In this review we examined the currently available animal models for GBM, including rodent transplantable models, endogenous rodent tumor models and spontaneous GBM in dogs. We discuss non-invasive surrogate end points to assess tumor progression and therapeutic efficacy, such as behavioral tests and circulating biomarkers. Growing preclinical and clinical data contradict the old dogma that cytotoxic anti-cancer therapy would lead to an immune-suppression that would impair the ability of the immune system to mount an anti-tumor response. The implications of the findings reviewed indicate that combination of cytotoxic therapy with immunotherapy will lead to synergistic antitumor efficacy with reduced neurotoxicity and supports the clinical implementation of combined cytotoxic-immunotherapeutic strategies for the treatment of patients with GBM.


Assuntos
Neoplasias Encefálicas/terapia , Terapia Genética , Glioblastoma/terapia , Animais , Comportamento Animal , Terapia Combinada , Modelos Animais de Doenças , Cães , Humanos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA