Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 3(2): 168-183, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670533

RESUMO

In the earliest phase of inflammation, histamine and other agonists rapidly mobilize P-selectin to the apical membranes of endothelial cells, where it initiates rolling adhesion of flowing neutrophils. Clustering of P-selectin in clathrin-coated pits facilitates rolling. Inflammatory cytokines typically signal by regulating gene transcription over a period of hours. We found that neutrophils rolling on P-selectin secreted the cytokine oncostatin M (OSM). The released OSM triggered signals through glycoprotein 130 (gp130)-containing receptors on endothelial cells that, within minutes, further clustered P-selectin and markedly enhanced its adhesive function. Antibodies to OSM or gp130, deletion of the gene encoding OSM in hematopoietic cells, or conditional deletion of the gene encoding gp130 in endothelial cells inhibited neutrophil rolling on P-selectin in trauma-stimulated venules of the mouse cremaster muscle. In a mouse model of P-selectin-dependent deep vein thrombosis, deletion of OSM in hematopoietic cells or of gp130 in endothelial cells markedly inhibited adhesion of neutrophils and monocytes and the rate and extent of thrombus formation. Our results reveal a paracrine-signaling mechanism by which neutrophil-released OSM rapidly influences endothelial cell function during physiological and pathological inflammation.


Assuntos
Endotélio Vascular/metabolismo , Neutrófilos/metabolismo , Oncostatina M/metabolismo , Selectina-P/metabolismo , Trombose/etiologia , Trombose/metabolismo , Vasculite/etiologia , Vasculite/metabolismo , Animais , Biomarcadores , Adesão Celular , Comunicação Celular , Vesículas Revestidas por Clatrina/metabolismo , Receptor gp130 de Citocina/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Células Endoteliais/metabolismo , Humanos , Imunofenotipagem , Migração e Rolagem de Leucócitos , Camundongos , Camundongos Knockout , Modelos Biológicos , Neutrófilos/imunologia , Selectina-P/genética , Ligação Proteica , Transdução de Sinais , Trombose/patologia , Vasculite/patologia
2.
JCI Insight ; 3(14)2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30046013

RESUMO

Site-1 protease (S1P), encoded by MBTPS1, is a serine protease in the Golgi. S1P regulates lipogenesis, endoplasmic reticulum (ER) function, and lysosome biogenesis in mice and in cultured cells. However, how S1P differentially regulates these diverse functions in humans has been unclear. In addition, no human disease with S1P deficiency has been identified. Here, we report a pediatric patient with an amorphic and a severely hypomorphic mutation in MBTPS1. The unique combination of these mutations results in a frequency of functional MBTPS1 transcripts of approximately 1%, a finding that is associated with skeletal dysplasia and elevated blood lysosomal enzymes. We found that the residually expressed S1P is sufficient for lipid homeostasis but not for ER and lysosomal functions, especially in chondrocytes. The defective S1P function specifically impairs activation of the ER stress transducer BBF2H7, leading to ER retention of collagen in chondrocytes. S1P deficiency also causes abnormal secretion of lysosomal enzymes due to partial impairment of mannose-6-phosphate-dependent delivery to lysosomes. Collectively, these abnormalities lead to apoptosis of chondrocytes and lysosomal enzyme-mediated degradation of the bone matrix. Correction of an MBTPS1 variant or reduction of ER stress mitigated collagen-trafficking defects. These results define a new congenital human skeletal disorder and, more importantly, reveal that S1P is particularly required for skeletal development in humans. Our findings may also lead to new therapies for other genetic skeletal diseases, as ER dysfunction is common in these disorders.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Transporte Proteico , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Apoptose , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Doenças do Desenvolvimento Ósseo/fisiopatologia , Técnicas de Cultura de Células , Pré-Escolar , Condrócitos/metabolismo , Colágeno/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Doenças Genéticas Inatas , Complexo de Golgi/metabolismo , Homeostase , Humanos , Lipogênese , Lisossomos/metabolismo , Manosefosfatos , Mutação
3.
Blood Adv ; 2(7): 731-744, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29592875

RESUMO

Rolling neutrophils receive signals while engaging P- and E-selectin and chemokines on inflamed endothelium. Selectin signaling activates ß2 integrins to slow rolling velocities. Chemokine signaling activates ß2 integrins to cause arrest. Despite extensive study, key aspects of these signaling cascades remain unresolved. Using complementary in vitro and in vivo assays, we found that selectin and chemokine signals in neutrophils triggered Rap1a-dependent and phosphatidylinositol-4-phosphate 5-kinase γ (PIP5Kγ90)-dependent pathways that induce integrin-dependent slow rolling and arrest. Interruption of both pathways, but not either pathway alone, blocked talin-1 recruitment to and activation of integrins. An isoform of PIP5Kγ90 lacking the talin-binding domain (PIP5Kγ87) could not activate integrins. Chemokines, but not selectins, used phosphatidylinositol-4,5-bisphosphate 3-kinase γ (PI3Kγ) in cooperation with Rap1a to mediate integrin-dependent slow rolling (at low chemokine concentrations), as well as arrest (at high chemokine concentrations). High levels of chemokines activated ß2 integrins without selectin signals. When chemokines were limiting, they synergized with selectins to activate ß2 integrins.


Assuntos
Antígenos CD18/metabolismo , Quimiocinas/fisiologia , Migração e Rolagem de Leucócitos , Neutrófilos/metabolismo , Selectinas/fisiologia , Animais , Quimiocinas/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Humanos , Camundongos , Neutrófilos/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Selectinas/metabolismo , Transdução de Sinais/fisiologia , Proteínas rap1 de Ligação ao GTP/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(31): 8360-8365, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716912

RESUMO

Most platelet membrane proteins are modified by mucin-type core 1-derived glycans (O-glycans). However, the biological importance of O-glycans in platelet clearance is unclear. Here, we generated mice with a hematopoietic cell-specific loss of O-glycans (HC C1galt1-/- ). These mice lack O-glycans on platelets and exhibit reduced peripheral platelet numbers. Platelets from HC C1galt1-/- mice show reduced levels of α-2,3-linked sialic acids and increased accumulation in the liver relative to wild-type platelets. The preferential accumulation of HC C1galt1-/- platelets in the liver was reduced in mice lacking the hepatic asialoglycoprotein receptor [Ashwell-Morell receptor (AMR)]. However, we found that Kupffer cells are the primary cells phagocytosing HC C1galt1-/- platelets in the liver. Our results demonstrate that hepatic AMR promotes preferential adherence to and phagocytosis of desialylated and/or HC C1galt1-/- platelets by the Kupffer cell through its C-type lectin receptor CLEC4F. These findings provide insights into an essential role for core 1 O-glycosylation of platelets in their clearance in the liver.


Assuntos
Plaquetas/metabolismo , Galactosiltransferases/genética , Células de Kupffer/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Animais , Receptor de Asialoglicoproteína/metabolismo , Hepatócitos/metabolismo , Homeostase/fisiologia , Lectinas Tipo C/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trombocitopenia/patologia
5.
J Immunol ; 195(8): 3880-9, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26355151

RESUMO

A2A adenosine receptor (A2AAR) signaling negatively regulates inflammatory responses in many disease models, but the detailed mechanisms remain unclear. We used the selective A2AAR agonist, ATL313, to examine how A2AAR signaling affects human and murine neutrophil adhesion under flow. Treating neutrophils with ATL313 inhibited selectin-induced, ß2 integrin-dependent slow rolling and chemokine-induced, ß2 integrin-dependent arrest on ICAM-1. ATL313 inhibited selectin-induced ß2 integrin extension, which supports slow rolling, and chemokine-induced hybrid domain "swing-out," which supports arrest. Furthermore, ATL313 inhibited integrin outside-in signaling as revealed by reduced neutrophil superoxide production and spreading on immobilized anti-ß2 integrin Ab. ATL313 suppressed selectin-triggered activation of Src family kinases (SFKs) and p38 MAPK, chemokine-triggered activation of Ras-related protein 1, and ß2 integrin-triggered activation of SFKs and Vav cytoskeletal regulatory proteins. ATL313 activated protein kinase A and its substrate C-terminal Src kinase, an inhibitor of SFKs. Treating neutrophils with a protein kinase A inhibitor blocked the actions of ATL313. In vivo, ATL313-treated neutrophils rolled faster and arrested much less frequently in postcapillary venules of the murine cremaster muscle after TNF-α challenge. Furthermore, ATL313 markedly suppressed neutrophil migration into the peritoneum challenged with thioglycollate. ATL313 did not affect A2AAR-deficient neutrophils, confirming its specificity. Our findings provide new insights into the anti-inflammatory mechanisms of A2AAR signaling and the potential utility of A2AAR agonists in inflammatory diseases.


Assuntos
Migração e Rolagem de Leucócitos/imunologia , Neutrófilos/imunologia , Receptor A2A de Adenosina/imunologia , Transdução de Sinais/imunologia , Animais , Antígenos CD18/genética , Antígenos CD18/imunologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/imunologia , Humanos , Migração e Rolagem de Leucócitos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Neutrófilos/citologia , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/imunologia , Receptor A2A de Adenosina/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Quinases da Família src/genética , Quinases da Família src/imunologia
6.
Proc Natl Acad Sci U S A ; 112(28): 8661-6, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124096

RESUMO

Palmitoylated cysteines typically target transmembrane proteins to domains enriched in cholesterol and sphingolipids (lipid rafts). P-selectin glycoprotein ligand-1 (PSGL-1), CD43, and CD44 are O-glycosylated proteins on leukocytes that associate with lipid rafts. During inflammation, they transduce signals by engaging selectins as leukocytes roll in venules, and they move to the raft-enriched uropods of polarized cells upon chemokine stimulation. It is not known how these glycoproteins associate with lipid rafts or whether this association is required for signaling or for translocation to uropods. Here, we found that loss of core 1-derived O-glycans in murine C1galt1(-/-) neutrophils blocked raft targeting of PSGL-1, CD43, and CD44, but not of other glycosylated proteins, as measured by resistance to solubilization in nonionic detergent and by copatching with a raft-resident sphingolipid on intact cells. Neuraminidase removal of sialic acids from wild-type neutrophils also blocked raft targeting. C1galt1(-/-) neutrophils or neuraminidase-treated neutrophils failed to activate tyrosine kinases when plated on immobilized anti-PSGL-1 or anti-CD44 F(ab')2. Furthermore, C1galt1(-/-) neutrophils incubated with anti-PSGL-1 F(ab')2 did not generate microparticles. In marked contrast, PSGL-1, CD43, and CD44 moved normally to the uropods of chemokine-stimulated C1galt1(-/-) neutrophils. These data define a role for core 1-derived O-glycans and terminal sialic acids in targeting glycoprotein ligands for selectins to lipid rafts of leukocytes. Preassociation of these glycoproteins with rafts is required for signaling but not for movement to uropods.


Assuntos
Leucócitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Polissacarídeos/metabolismo , Animais , Receptores de Hialuronatos/metabolismo , Leucossialina/metabolismo , Ligantes , Camundongos
7.
Microvasc Res ; 94: 96-102, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24944097

RESUMO

Transcription factor prospero homeobox 1 (Prox-1) and podoplanin (PDPN), mucin-type transmembane protein, are both constantly expressed in lymphatic endothelial cells (LECs) and appear to function in an LEC-autonomous manner. Mice globally lacking PDPN (Pdpn(-/-)) develop abnormal and blood-filled lymphatic vessels that highly resemble those in inducible mice lacking Prox-1 (Prox1(-/-)). Prox1 has also been reported to induce PDPN expression in cultured ECs. Thus, we hypothesize that PDPN functions downstream of Prox1 and that its expression is regulated by Prox1 in LECs at the transcriptional level. We first identified four putative binding elements for Prox1 in the 5' upstream regulatory region of Pdpn gene and found that Prox1 directly binds to the 5' regulatory sequence of Pdpn gene in LECs by chromatin immunoprecipitation assay. DNA pull down assay confirmed that Prox1 binds to the putative binding element. In addition, luciferase reporter assay indicated that Prox1 binding to the 5' regulatory sequence of Pdpn regulates Pdpn gene expression. We are therefore the first to experimentally demonstrate that Prox1 regulates PDPN expression at the transcriptional level in the lymphatic vascular system.


Assuntos
Células Endoteliais/citologia , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Regiões 5' não Traduzidas , Animais , Sequência de Bases , Sítios de Ligação , Membrana Celular/metabolismo , Galinhas , Imunoprecipitação da Cromatina , Expressão Gênica , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Plasmídeos/metabolismo , Ligação Proteica , Coelhos , Ratos , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
8.
Blood ; 122(23): 3832-42, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24081661

RESUMO

Neutrophils emigrate from venules to sites of infection or injury in response to chemotactic gradients. How these gradients form is not well understood. Some IL-6 family cytokines stimulate endothelial cells to express adhesion molecules and chemokines that recruit leukocytes. Receptors for these cytokines share the signaling subunit gp130. We studied knockout mice lacking gp130 in endothelial cells. Unexpectedly, gp130-deficient endothelial cells constitutively expressed more CXCL1 in vivo and in vitro, and even more upon stimulation with tumor necrosis factor-α. Mobilization of this increased CXCL1 from intracellular stores to the venular surface triggered ß2 integrin-dependent arrest of neutrophils rolling on selectins but impaired intraluminal crawling and transendothelial migration. Superfusing CXCL1 over venules promoted neutrophil migration only after intravenously injecting mAb to CXCL1 to diminish its intravascular function or heparinase to release CXCL1 from endothelial proteoglycans. Remarkably, mice lacking gp130 in endothelial cells had impaired histamine-induced venular permeability, which was restored by injecting anti-P-selectin mAb to prevent neutrophil rolling and arrest. Thus, excessive CXCL1 expression in gp130-deficient endothelial cells augments neutrophil adhesion but hinders migration, most likely by disrupting chemotactic gradients. Our data define a role for endothelial cell gp130 in regulating integrin-dependent adhesion and de-adhesion of neutrophils during inflammation.


Assuntos
Quimiocina CXCL1/metabolismo , Receptor gp130 de Citocina/deficiência , Células Endoteliais/fisiologia , Neutrófilos/fisiologia , Animais , Permeabilidade Capilar/fisiologia , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Quimiocina CXCL1/genética , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/fisiologia , Inflamação/fisiopatologia , Migração e Rolagem de Leucócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Selectina-P/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Regulação para Cima , Vênulas/fisiologia
9.
J Exp Med ; 207(13): 2975-87, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21149548

RESUMO

Leukocytes roll on P-selectin after its mobilization from secretory granules to the surfaces of platelets and endothelial cells. Tumor necrosis factor (TNF), IL-1ß, and lipopolysaccharide increase synthesis of P-selectin in murine but not in human endothelial cells. To explore the physiological significance of this difference in gene regulation, we made transgenic mice bearing the human Selp gene and crossed them with mice lacking murine P-selectin (Selp(-/-)). The transgenic mice constitutively expressed human P-selectin in platelets, endothelial cells, and macrophages. P-selectin mediated comparable neutrophil migration into the inflamed peritoneum of transgenic and wild-type (WT) mice. Leukocytes rolled similarly on human or murine P-selectin on activated murine platelets and in venules of the cremaster muscle subjected to trauma. However, TNF increased murine P-selectin in venules, slowing rolling and increasing adhesion, whereas it decreased human P-selectin, accelerating rolling and decreasing adhesion. Both P- and E-selectin mediated basal rolling in the skin of WT mice, but E-selectin dominated rolling in transgenic mice. During contact hypersensitivity, murine P-selectin messenger (m) RNA was up-regulated and P-selectin was essential for leukocyte recruitment. However, human P-selectin mRNA was down-regulated and P-selectin contributed much less to leukocyte recruitment. These findings reveal functionally significant differences in basal and inducible expression of human and murine P-selectin in vivo.


Assuntos
Plaquetas/metabolismo , Perfilação da Expressão Gênica , Macrófagos Peritoneais/metabolismo , Selectina-P/genética , Animais , Western Blotting , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Migração e Rolagem de Leucócitos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , Neutrófilos/metabolismo , Selectina-P/metabolismo , Peritonite/induzido quimicamente , Peritonite/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tioglicolatos , Fator de Necrose Tumoral alfa/farmacologia , Vênulas/metabolismo
10.
Proc Natl Acad Sci U S A ; 107(20): 9204-9, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20439727

RESUMO

Neutrophils roll on E-selectin in inflamed venules through interactions with cell-surface glycoconjugates. The identification of physiologic E-selectin ligands on neutrophils has been elusive. Current evidence suggests that P-selectin glycoprotein ligand-1 (PSGL-1), E-selectin ligand-1 (ESL-1), and CD44 encompass all glycoprotein ligands for E-selectin; that ESL-1 and CD44 use N-glycans to bind to E-selectin; and that neutrophils lacking core 2 O-glycans have partially defective interactions with E-selectin. These data imply that N-glycans on ESL-1 and CD44 and O-glycans on PSGL-1 constitute all E-selectin ligands, with neither glycan subset having a dominant role. The enzyme T-synthase transfers Gal to GalNAcalpha1-Ser/Thr to form the core 1 structure Galbeta1-3GalNAcalpha1-Ser/Thr, a precursor for core 2 and extended core 1 O-glycans that might serve as selectin ligands. Here, using mice lacking T-synthase in endothelial and hematopoietic cells, we found that E-selectin bound to CD44 and ESL-1 in lysates of T-synthase-deficient neutrophils. However, the cells exhibited markedly impaired rolling on E-selectin in vitro and in vivo, failed to activate beta2 integrins while rolling, and did not emigrate into inflamed tissues. These defects were more severe than those of neutrophils lacking PSGL-1, CD44, and the mucin CD43. Our results demonstrate that core 1-derived O-glycans are essential E-selectin ligands; that some of these O-glycans are on protein(s) other than PSGL-1, CD44, and CD43; and that PSGL-1, CD44, and ESL-1 do not constitute all glycoprotein ligands for E-selectin.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Selectina E/metabolismo , Neutrófilos/metabolismo , Polissacarídeos/metabolismo , Animais , Citometria de Fluxo , Receptores de Hialuronatos/metabolismo , Ligantes , Glicoproteínas de Membrana/metabolismo , Camundongos , Neutrófilos/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sialoglicoproteínas/metabolismo
11.
Blood ; 116(3): 485-94, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20299514

RESUMO

In inflamed venules, neutrophils rolling on E-selectin induce integrin alpha(L)beta(2)-dependent slow rolling on intercellular adhesion molecule-1 by activating Src family kinases (SFKs), DAP12 and Fc receptor-gamma (FcRgamma), spleen tyrosine kinase (Syk), and p38. E-selectin signaling cooperates with chemokine signaling to recruit neutrophils into tissues. Previous studies identified P-selectin glycoprotein ligand-1 (PSGL-1) as the essential E-selectin ligand and Fgr as the only SFK that initiate signaling to slow rolling. In contrast, we found that E-selectin engagement of PSGL-1 or CD44 triggered slow rolling through a common, lipid raft-dependent pathway that used the SFKs Hck and Lyn as well as Fgr. We identified the Tec kinase Bruton tyrosine kinase as a key signaling intermediate between Syk and p38. E-selectin engagement of PSGL-1 was dependent on its cytoplasmic domain to activate SFKs and slow rolling. Although recruiting phosphoinositide-3-kinase to the PSGL-1 cytoplasmic domain was reported to activate integrins, E-selectin-mediated slow rolling did not require phosphoinositide-3-kinase. Studies in mice confirmed the physiologic significance of these events for neutrophil slow rolling and recruitment during inflammation. Thus, E-selectin triggers common signals through distinct neutrophil glycoproteins to induce alpha(L)beta(2)-dependent slow rolling.


Assuntos
Selectina E/fisiologia , Receptores de Hialuronatos/fisiologia , Migração e Rolagem de Leucócitos/fisiologia , Antígeno-1 Associado à Função Linfocitária/fisiologia , Glicoproteínas de Membrana/fisiologia , Tirosina Quinase da Agamaglobulinemia , Animais , Humanos , Receptores de Hialuronatos/genética , Técnicas In Vitro , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Microdomínios da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Neutrófilos/fisiologia , Selectina-P/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-hck/fisiologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Quinases da Família src/fisiologia
12.
J Biol Chem ; 279(43): 44915-23, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15299021

RESUMO

Surface presentation of adhesion receptors influences cell adhesion, although the mechanisms underlying these effects are not well understood. We used a micropipette adhesion frequency assay to quantify how the molecular orientation and length of adhesion receptors on the cell membrane affected two-dimensional kinetic rates of interactions with surface ligands. Interactions of P-selectin, E-selectin, and CD16A with their respective ligands or antibody were used to demonstrate such effects. Randomizing the orientation of the adhesion receptor or lowering its ligand- and antibody-binding domain above the cell membrane lowered two-dimensional affinities of the molecular interactions by reducing the forward rates but not the reverse rates. In contrast, the soluble antibody bound with similar three-dimensional affinities to cell-bound P-selectin constructs regardless of their orientation and length. These results demonstrate that the orientation and length of an adhesion receptor influences its rate of encountering and binding a surface ligand but does not subsequently affect the stability of binding.


Assuntos
Receptores de IgG/química , Animais , Anticorpos Monoclonais/química , Células CHO , Adesão Celular , Linhagem Celular Tumoral , Cricetinae , Relação Dose-Resposta a Droga , Selectina E/química , Eritrócitos/metabolismo , Células HL-60 , Humanos , Cinética , Ligantes , Modelos Biológicos , Modelos Químicos , Selectina-P/química , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de IgG/metabolismo , Fatores de Tempo
13.
Blood ; 104(10): 3091-6, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15280192

RESUMO

Murine hematopoietic stem and progenitor cells (HSPCs) home to bone marrow in part by rolling on P-selectin and E-selectin expressed on endothelial cells. Human adult CD34(+) cells, which are enriched in HSPCs, roll on endothelial selectins in bone marrow vessels of nonobese diabetic/severe combined immune deficiency (NOD/SCID) mice. Many human umbilical cord blood (CB) CD34(+) cells do not roll in these vessels, in part because of an uncharacterized defect in binding to P-selectin. Selectin ligands must be alpha1-3 fucosylated to form glycan determinants such as sialyl Lewis x (sLe(x)). We found that inadequate alpha1-3 fucosylation of CB CD34(+) cells, particularly CD34(+)CD38(-/low) cells that are highly enriched in HSPCs, caused them to bind poorly to E-selectin as well as to P-selectin. Treatment of CB CD34(+) cells with guanosine diphosphate (GDP) fucose and exogenous alpha1-3 fucosyltransferase VI increased cell-surface sLe(x) determinants, augmented binding to fluid-phase P- and E-selectin, and improved cell rolling on P- and E-selectin under flow. Similar treatment of CB mononuclear cells enhanced engraftment of human hematopoietic cells in bone marrows of irradiated NOD/SCID mice. These observations suggest that alpha1-3 fucosylation of CB cells might be a simple and effective method to improve hematopoietic cell homing to and engraftment in bone marrows of patients receiving CB transplants.


Assuntos
Transplante de Medula Óssea , Selectina E/metabolismo , Sangue Fetal/citologia , Fucose/metabolismo , Selectina-P/metabolismo , Animais , Antígenos CD34/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Adesão Celular , Epitopos , Feminino , Fucosiltransferases/metabolismo , Fucosiltransferases/farmacologia , Humanos , Migração e Rolagem de Leucócitos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Antígenos CD15/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Organismos Livres de Patógenos Específicos
14.
J Biol Chem ; 278(29): 26391-400, 2003 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-12736247

RESUMO

L-selectin expressed on leukocytes is involved in lymphocyte homing to secondary lymphoid organs and leukocyte recruitment into inflamed tissue. L-selectin binds to the sulfated sialyl Lewis x (6-sulfo-sLex) epitope present on O-glycans of various glycoproteins in high endothelial venules. In addition, L-selectin interacts with the dimeric mucin P-selectin glycoprotein ligand-1 (PSGL-1) expressed on leukocytes. PSGL-1 lacks 6-sulfo-sLex but contains sulfated tyrosine residues (Tyr-SO3)at positions 46, 48, and 51 and sLex in a core 2-based O-glycan (C2-O-sLex) on Thr at position 57. The role of tyrosine sulfation and core 2 O-glycans in binding of PSGL-1 to L-selectin is not well defined. Here, we show that L-selectin binds to a glycosulfopeptide (GSP-6) modeled after the extreme N terminus of human PSGL-1, containing three Tyr-SO3 and a nearby Thr modified with C2-O-sLex. Leukocytes roll on immobilized GSP-6 in an L-selectin-dependent manner, and rolling is dependent on Tyr-SO3 and C2-O-sLex on GSP-6. The dissociation constant for binding of L-selectin to GSP-6, as measured by equilibrium gel filtration, is approximately 5 microm. Binding is dependent on Tyr-SO3 residues as well as the sialic acid and fucose residues of C2-O-sLex. Binding to an isomeric glycosulfopeptide containing three Tyr-SO3 residues and a core 1-based O-glycan expressing sLex was reduced by approximately 90%. All three Tyr-SO3 residues of GSP-6 are required for high affinity binding to L-selectin. Low affinity binding to mono- and disulfated GSPs is largely independent of the position of the Tyr-SO3 residues, except for some binding preference for an isomer sulfated on both Tyr-48 and -51. These results demonstrate that L-selectin binds with high affinity to the N-terminal region of PSGL-1 through cooperative interactions with three sulfated tyrosine residues and an appropriately positioned C2-O-sLex O-glycan.


Assuntos
Glicopeptídeos/química , Glicopeptídeos/metabolismo , Glicoproteínas , Selectina L/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Peptídeos , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Fucose/química , Glicopeptídeos/genética , Humanos , Técnicas In Vitro , Cinética , Leucócitos/metabolismo , Ligantes , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Ácido N-Acetilneuramínico/química , Selectina-P/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tirosina/química
15.
J Cell Biol ; 158(4): 787-99, 2002 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-12177042

RESUMO

Leukocytes roll on selectins at nearly constant velocities over a wide range of wall shear stresses. Ligand-coupled microspheres roll faster on selectins and detach quickly as wall shear stress is increased. To examine whether the superior performance of leukocytes reflects molecular features of native ligands or cellular properties that favor selectin-mediated rolling, we coupled structurally defined selectin ligands to microspheres or K562 cells and compared their rolling on P-selectin. Microspheres bearing soluble P-selectin glycoprotein ligand (sPSGL)-1 or 2-glycosulfopeptide (GSP)-6, a GSP modeled after the NH2-terminal P-selectin-binding region of PSGL-1, rolled equivalently but unstably on P-selectin. K562 cells displaying randomly coupled 2-GSP-6 also rolled unstably. In contrast, K562 cells bearing randomly coupled sPSGL-1 or 2-GSP-6 targeted to a membrane-distal region of the presumed glycocalyx rolled more like leukocytes: rolling steps were more uniform and shear resistant, and rolling velocities tended to plateau as wall shear stress was increased. K562 cells treated with paraformaldehyde or methyl-beta-cyclodextrin before ligand coupling were less deformable and rolled unstably like microspheres. Cells treated with cytochalasin D were more deformable, further resisted detachment, and rolled slowly despite increases in wall shear stress. Thus, stable, shear-resistant rolling requires cellular properties that optimize selectin-ligand interactions.


Assuntos
Proteínas de Transporte/metabolismo , Movimento Celular , Glicoproteínas , Células K562/citologia , Glicoproteínas de Membrana/metabolismo , Selectina-P/fisiologia , Peptídeos , Estresse Mecânico , Humanos , Células K562/fisiologia , Ligantes , Microesferas , Modelos Biológicos , Mucinas/metabolismo , Células Tumorais Cultivadas
16.
J Clin Invest ; 109(7): 939-50, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11927621

RESUMO

P-selectin glycoprotein ligand-1 (PSGL-1) mediates rolling of leukocytes on P-selectin under flow. The glycoproteins that enable leukocyte tethering to or rolling on E-selectin are not known. We used gene targeting to prepare PSGL-1-deficient (PSGL-1-/-) mice, which were healthy but had moderately elevated total blood leukocytes. Fluid-phase E-selectin bound to approximately 70% fewer sites on PSGL-1-/- than PSGL-1+/+ neutrophils. Compared with PSGL-1+/+ leukocytes, significantly fewer PSGL-1-/- leukocytes rolled on E-selectin in vitro, because their initial tethering to E-selectin was impaired. The residual cells that tethered rolled with the same shear resistance and velocities as PSGL-1+/+ leukocytes. Compared with PSGL-1+/+ mice, significantly fewer PSGL-1-/- leukocytes rolled on E-selectin in TNF-alpha-treated venules of cremaster muscle in which P-selectin function was blocked by an mAb. The residual PSGL-1-/- leukocytes that tethered rolled with slow velocities equivalent to those of PSGL-1+/+ leukocytes. These results reveal a novel function for PSGL-1 in tethering leukocytes to E-selectin under flow.


Assuntos
Quimiotaxia de Leucócito/imunologia , Selectina E/imunologia , Glicoproteínas de Membrana/imunologia , Neutrófilos/imunologia , Selectina-P/imunologia , Animais , Feminino , Imunoglobulina M/imunologia , Ligantes , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA