Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Am J Pathol ; 193(6): 829-842, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36870529

RESUMO

Growth hormone (GH) is a key mediator of skeletal growth. In humans, excess GH secretion due to pituitary adenoma, seen in patients with acromegaly, results in severe arthropathies. This study investigated the effects of long-term excess GH on the knee joint tissues. One year-old wild-type (WT) and bovine GH (bGH) transgenic mice were used as a model for excess GH. bGH mice showed increased sensitivity to mechanical and thermal stimuli, compared with WT mice. Micro-computed tomography analyses of the distal femur subchondral bone revealed significant reductions in trabecular thickness and significantly reduced bone mineral density of the tibial subchondral bone-plate associated with increased osteoclast activity in both male and female bGH compared with WT mice. bGH mice showed severe loss of matrix from the articular cartilage, osteophytosis, synovitis, and ectopic chondrogenesis. Articular cartilage loss in the bGH mice was associated with elevated markers of inflammation and chondrocyte hypertrophy. Finally, hyperplasia of synovial cells was associated with increased expression of Ki-67 and diminished p53 levels in the synovium of bGH mice. Unlike the low-grade inflammation seen in primary osteoarthritis, arthropathy caused by excess GH affects all joint tissues and triggers severe inflammatory response. Data from this study suggest that treatment of acromegalic arthropathy should involve inhibition of ectopic chondrogenesis and chondrocyte hypertrophy.


Assuntos
Acromegalia , Cartilagem Articular , Humanos , Camundongos , Masculino , Animais , Feminino , Bovinos , Lactente , Microtomografia por Raio-X , Camundongos Transgênicos , Hormônio do Crescimento/metabolismo , Cartilagem Articular/metabolismo , Artralgia/etiologia , Inflamação , Hipertrofia
2.
Aging Cell ; 20(12): e13506, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811874

RESUMO

Studies in multiple species indicate that reducing growth hormone (GH) action enhances healthy lifespan. In fact, GH receptor knockout (GHRKO) mice hold the Methuselah prize for the world's longest-lived laboratory mouse. We previously demonstrated that GHR ablation starting at puberty (1.5 months), improved insulin sensitivity and female lifespan but results in markedly reduced body size. In this study, we investigated the effects of GHR disruption in mature-adult mice at 6 months old (6mGHRKO). These mice exhibited GH resistance (reduced IGF-1 and elevated GH serum levels), increased body adiposity, reduced lean mass, and minimal effects on body length. Importantly, 6mGHRKO males have enhanced insulin sensitivity and reduced neoplasms while females exhibited increased median and maximal lifespan. Furthermore, fasting glucose and oxidative damage was reduced in females compared to males irrespective of Ghr deletion. Overall, disrupted GH action in adult mice resulted in sexual dimorphic effects suggesting that GH reduction at older ages may have gerotherapeutic effects.


Assuntos
Insulina/metabolismo , Receptores da Somatotropina/genética , Envelhecimento , Animais , Feminino , Masculino , Camundongos , Transdução de Sinais
3.
Front Endocrinol (Lausanne) ; 12: 688104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220714

RESUMO

The insulin-like growth factors (IGF) are important players in the development of gynecological malignancies, including epithelial ovarian cancer (EOC). The identification of biomarkers that can help in the diagnosis and scoring of EOC patients is of fundamental importance in clinical oncology. We have recently identified the ZYG11A gene as a new candidate target of IGF1 action. The aim of the present study was to evaluate the expression of ZYG11A in EOC patients and to correlate its pattern of expression with histological grade and pathological stage. Furthermore, and in view of previous analyses showing an interplay between ZYG11A, p53 and the IGF1 receptor (IGF1R), we assessed a potential coordinated expression of these proteins in EOC. In addition, zyg11a expression was assessed in ovaries and uteri of growth hormone receptor (GHR) knock-out mice. Tissue microarray analysis was conducted on 36 patients with EOC and expression of ZYG11A, IGF1R and p53 was assessed by immunohistochemistry. Expression levels were correlated with clinical parameters. qPCR was employed to assess zyg11a mRNA levels in mice tissues. Our analyses provide evidence of reduced ZYG11A expression in high grade tumors, consistent with a putative tumor suppressor role. In addition, an inverse correlation between ZYG11A and p53 levels in individual tumors was noticed. Taken together, our data justify further exploration of the role of ZYG11A as a novel biomarker in EOC.


Assuntos
Carcinoma Epitelial do Ovário/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias Ovarianas/metabolismo , Ovário/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Proteínas de Ciclo Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ovário/patologia , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Cells ; 10(6)2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204736

RESUMO

Endometrial cancer is the most common gynecologic malignancy in Western countries. The insulin-like growth factor-1 (IGF1) axis has an important role in endometrial cancer biology and emerged as a promising therapeutic target in oncology. However, there is an urgent need to identify biomarkers that may help in patient stratification and prognosis. Laron syndrome (LS) is a type of dwarfism that results from the mutation of the growth hormone receptor (GHR) gene, leading to congenital IGF1 deficiency. While high circulating IGF1 is regarded as a risk factor in cancer, epidemiological studies have shown that LS patients are protected from cancer development. Recent genome-wide profilings conducted on LS-derived lymphoblastoid cells led to the identification of a series of genes whose over- or under-representation in this condition might be mechanistically linked to cancer protection. The olfactory receptor 5 subfamily H member 2 (OR5H2) was the top downregulated gene in LS, its expression level being 5.8-fold lower than in the control cells. In addition to their typical role in the olfactory epithelium, olfactory receptors (ORs) are expressed in multiple tissues and play non-classical roles in various pathologies, including cancer. The aim of our study was to investigate the regulation of OR5H2 gene expression by IGF1 in endometrial cancer. Data showed that IGF1 and insulin stimulate OR5H2 mRNA and the protein levels in uterine cancer cell lines expressing either a wild-type or a mutant p53. OR5H2 silencing led to IGF1R downregulation, with ensuing reductions in the downstream cytoplasmic mediators. In addition, OR5H2 knockdown reduced the proliferation rate and cell cycle progression. Analyses of olfr196 (the mouse orthologue of OR5H2) mRNA expression in animal models of GHR deficiency or GH overexpression corroborated the human data. In summary, OR5H2 emerged as a novel target for positive regulation by IGF1, with potential relevance in endometrial cancer.


Assuntos
Neoplasias do Endométrio/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Receptores Odorantes/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Neoplasias do Endométrio/patologia , Feminino , Humanos , Síndrome de Laron/genética , Síndrome de Laron/metabolismo , Camundongos , Camundongos Transgênicos , Receptor IGF Tipo 1/metabolismo
5.
Aging Cell ; 20(8): e13427, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34240807

RESUMO

Osteoarthritis (OA), the most prevalent joint disease, is a major cause of disability worldwide. Growth hormone (GH) has been suggested to play significant roles in maintaining articular chondrocyte function and ultimately articular cartilage (AC) homeostasis. In humans, the age-associated decline in GH levels was hypothesized to play a role in the etiology of OA. We studied the impact of adult-onset isolated GH deficiency (AOiGHD) on the life span and skeletal integrity including the AC, in 23- to 30-month-old male and female mice on C57/BL6 genetic background. Reductions in GH during adulthood were associated with extended life span and reductions in body temperature in female mice only. However, end-of-life pathology revealed high levels of lymphomas in both sexes, independent of GH status. Skeletal characterization revealed increases in OA severity in AOiGHD mice, evidenced by AC degradation in both femur and tibia, and significantly increased osteophyte formation in AOiGHD females. AOiGHD males showed significant increases in the thickness of the synovial lining cell layer that was associated with increased markers of inflammation (IL-6, iNOS). Furthermore, male AOiGHD showed significant increases in matrix metalloproteinase-13 (MMP-13), p16, and ß-galactosidase immunoreactivity in the AC as compared to controls, indicating increased cell senescence. In conclusion, while the life span of AOiGHD females increased, their health span was compromised by high-grade lymphomas and the development of severe OA. In contrast, AOiGHD males, which did not show extended life span, showed an overall low grade of lymphomas but exhibited significantly decreased health span, evidenced by increased OA severity.


Assuntos
Longevidade/genética , Osteoartrite/genética , Caracteres Sexuais , Envelhecimento , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos
6.
J Endocrinol ; 248(1): 31-44, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112796

RESUMO

A reduction in hepatocyte growth hormone (GH)-signaling promotes non-alcoholic fatty liver disease (NAFLD). However, debate remains as to the relative contribution of the direct effects of GH on hepatocyte function vs indirect effects, via alterations in insulin-like growth factor 1 (IGF1). To isolate the role of hepatocyte GH receptor (GHR) signaling, independent of changes in IGF1, mice with adult-onset, hepatocyte-specific GHR knockdown (aHepGHRkd) were treated with a vector expressing rat IGF1 targeted specifically to hepatocytes. Compared to GHR-intact mice, aHepGHRkd reduced circulating IGF1 and elevated GH. In male aHepGHRkd, the shift in IGF1/GH did not alter plasma glucose or non-esterified fatty acids (NEFA), but was associated with increased insulin, enhanced systemic lipid oxidation and reduced white adipose tissue (WAT) mass. Livers of male aHepGHRkd exhibited steatosis associated with increased de novo lipogenesis, hepatocyte ballooning and inflammation. In female aHepGHRkd, hepatic GHR protein levels were not detectable, but moderate levels of IGF1 were maintained, with minimal alterations in systemic metabolism and no evidence of steatosis. Reconstitution of hepatocyte IGF1 in male aHepGHRkd lowered GH and normalized insulin, whole body lipid utilization and WAT mass. However, IGF1 reconstitution did not reduce steatosis or eliminate liver injury. RNAseq analysis showed IGF1 reconstitution did not impact aHepGHRkd-induced changes in liver gene expression, despite changes in systemic metabolism. These results demonstrate the impact of aHepGHRkd is sexually dimorphic and the steatosis and liver injury observed in male aHepGHRkd mice is autonomous of IGF1, suggesting GH acts directly on the adult hepatocyte to control NAFLD progression.


Assuntos
Fígado Gorduroso/etiologia , Hormônio do Crescimento/fisiologia , Hepatócitos/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Fígado/metabolismo , Animais , Feminino , Metabolismo dos Lipídeos , Masculino , Camundongos , Receptores da Somatotropina/fisiologia , Caracteres Sexuais , Somatotrofos/metabolismo
7.
Endocrinology ; 161(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32556100

RESUMO

A rare 20K isoform of GH-V (here abbreviated as GHv) was discovered in 1998. To date, only 1 research article has characterized this isoform in vivo, observing that GHv treatment in male high-fat fed rats had several GH-like activities, but unlike GH lacked diabetogenic and lactogenic activities and failed to increase IGF-1 or body length. Therefore, the current study was conducted to further characterize the in vivo activities of GHv in a separate species and in a GH-deficient model (GH-/- mice) and with both sexes represented. GHv-treated GH-/- mice had significant increases to serum IGF-1, femur length, body length, body weight, and lean body mass and reduced body fat mass similar to mice receiving GH treatment. GH treatment increased circulating insulin levels and impaired insulin sensitivity; in contrast, both measures were unchanged in GHv-treated mice. Since GHv lacks prolactin receptor (PRLR) binding activity, we tested the ability of GH and GHv to stimulate the proliferation of human cancer cell lines and found that GHv has a decreased proliferative response in cancers with high PRLR. Our findings demonstrate that GHv can stimulate insulin-like growth factor-1 and subsequent longitudinal body growth in GH-deficient mice similar to GH, but unlike GH, GHv promoted growth without inhibiting insulin action and without promoting the growth of PRLR-positive cancers in vitro. Thus, GHv may represent improvements to current GH therapies especially for individuals at risk for metabolic syndrome or PRLR-positive cancers.


Assuntos
Hormônio do Crescimento/genética , Hormônio do Crescimento Humano/farmacologia , Hormônios Placentários/farmacologia , Animais , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Feminino , Hormônio do Crescimento/deficiência , Terapia de Reposição Hormonal , Hormônio do Crescimento Humano/isolamento & purificação , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/química , Placenta/metabolismo , Hormônios Placentários/uso terapêutico , Gravidez , Isoformas de Proteínas
8.
Oncotarget ; 10(43): 4437-4448, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31320996

RESUMO

The insulin-like growth factors (IGF) have a key role in the development of gynecological cancers, including endometrial tumors. Uterine serous carcinoma (USC) constitutes a defined histological category among endometrial cancers. Laron syndrome (LS) is a genetic type of dwarfism that results from mutation of the growth hormone receptor (GHR) gene, and is the best characterized entity under the spectrum of the congenital IGF1 deficiencies. Epidemiological studies have shown that LS patients are protected from cancer development. Recent genome-wide association studies conducted on LS-derived lymphoblastoid cells led to the identification of a series of metabolic genes whose over-representation in this condition might be linked to cancer protection. Our analyses led to the identification of ZYG11A, a potential cell cycle regulator, as a new downstream target for IGF1 action. The aim of the present paper was to investigate the regulation of ZYG11A gene expression by IGF1 and insulin in endometrial cancer cell lines and to assess the impact of tumor suppressor p53 on ZYG11A expression and biological action. Using USC-derived cell lines expressing a wild type or a mutant p53 gene, we demonstrate that IGF1 inhibited ZYG11A mRNA and protein levels in cells containing a wild type p53. On the other hand, IGF1 potently stimulated ZYG11A expression in mutant p53-expressing cells. Data presented here links the IGF1 and p53 signaling pathways with ZYG11A action. The clinical implications of the present study in endometrial and other types of cancer must be further investigated.

9.
Cells ; 8(6)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31208077

RESUMO

Laron syndrome (LS), or primary growth hormone resistance, is a prototypical congenital insulin-like growth factor 1 (IGF1) deficiency. The recent epidemiological finding that LS patients do not develop cancer is of major scientific and clinical relevance. Epidemiological data suggest that congenital IGF1 deficiency confers protection against the development of malignancies. This 'experiment of nature' reflects the critical role of IGF1 in tumor biology. The present review article provides an overview of recently conducted genome-wide profiling analyses aimed at identifying mechanisms and signaling pathways that are directly responsible for the link between life-time low IGF1 levels and protection from tumor development. The review underscores the concept that 'data mining' an orphan disease might translate into new developments in oncology.


Assuntos
Estudo de Associação Genômica Ampla , Síndrome de Laron/genética , Neoplasias/prevenção & controle , Humanos , Fator de Crescimento Insulin-Like I/deficiência , Neoplasias/genética , Oncogenes , Transdução de Sinais
10.
Oncotarget ; 9(21): 15691-15704, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29644002

RESUMO

The growth of cancer metastases in the liver depends on a permissive interaction with the hepatic microenvironment and neutrophils can contribute to this interaction, either positively or negatively, depending on their phenotype. Here we investigated the role of IGF-I in the control of the tumor microenvironment in the liver, using mice with a conditional, liver-specific, IGF-I deficiency (iLID) induced by a single tamoxifen injection. In mice that had a sustained (3 weeks) IGF-I deficiency prior to the intrasplenic/portal inoculation of colon carcinoma MC-38 cells, we observed an increase in neutrophil accumulation in the liver relative to controls. However, unlike controls, these neutrophils did not acquire the (anti-inflammatory) tumor-promoting phenotype, as evidenced by retention of high ICAM-1 expression and nitric oxide production and low CXCR4, CCL5, and VEGF expression and arginase production, all characteristic of the (pro-inflammatory) phenotype. This coincided with an increase in apoptotic tumor cells and reduced metastasis. Neutrophils isolated from these mice also had reduced IGF-IR expression levels. These changes were not observed in iLID mice with a short-term (2 days) IGF-I depletion, despite a 70% reduction in their circulating IGF-I levels, indicating that a sustained IGF-I deficiency was necessary to alter the neutrophil phenotype. Similar results were obtained with the highly metastatic Lewis lung carcinoma subline H-59 cells and in mice injected with an IGF-Trap that blocks IGF-IR signaling by reducing ligand bioavailability. Our results implicate the IGF axis in neutrophil polarization and the induction of a pro-metastatic microenvironment in the liver.

11.
Proc Natl Acad Sci U S A ; 115(5): 1045-1050, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339473

RESUMO

Laron syndrome (LS), or primary growth hormone (GH) insensitivity, is the best-characterized entity among the congenital insulin-like growth factor 1 (IGF1) deficiencies. Life-long exposure to minute endogenous IGF1 levels is linked to low stature as well as a number of endocrine and metabolic abnormalities. While elevated IGF1 is correlated with increased cancer incidence, epidemiological studies revealed that patients with LS do not develop tumors. The mechanisms associated with cancer protection in LS are yet to be discovered. Recent genomic analyses identified a series of metabolic genes that are overrepresented in patients with LS. Given the augmented expression of these genes in a low IGF1 milieu, we hypothesized that they may constitute targets for IGF1 action. Thioredoxin-interacting protein (TXNIP) plays a critical role in cellular redox control by thioredoxin. TXNIP serves as a glucose and oxidative stress sensor, being commonly silenced by genetic or epigenetic events in cancer cells. Consistent with its enhanced expression in LS, we provide evidence that TXNIP gene expression is negatively regulated by IGF1. These results were corroborated in animal studies. In addition, we show that oxidative and glucose stresses led to marked increases in TXNIP expression. Supplementation of IGF1 attenuated TXNIP levels, suggesting that IGF1 exerts its antiapoptotic effect via inhibition of TXNIP Augmented TXNIP expression in LS may account for cancer protection in this condition. Finally, TXNIP levels could be potentially useful in the clinic as a predictive or diagnostic biomarker for IGF1R-targeted therapies.


Assuntos
Proteínas de Transporte/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Síndrome de Laron/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular , Expressão Gênica , Glucose/metabolismo , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Síndrome de Laron/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Estresse Oxidativo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
J Bone Miner Res ; 33(1): 123-136, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28902430

RESUMO

Hepatic osteodystrophy is multifactorial in its pathogenesis. Numerous studies have shown that impairments of the hepatic growth hormone/insulin-like growth factor-1 axis (GH/IGF-1) are common in patients with non-alcoholic fatty liver disease, chronic viral hepatitis, liver cirrhosis, and chronic cholestatic liver disease. Moreover, these conditions are also associated with low bone mineral density (BMD) and greater fracture risk, particularly in cortical bone sites. Hence, we addressed whether disruptions in the GH/IGF-1 axis were causally related to the low bone mass in states of chronic liver disease using a mouse model of liver-specific GH-receptor (GHR) gene deletion (Li-GHRKO). These mice exhibit chronic hepatic steatosis, local inflammation, and reduced BMD. We then employed a crossing strategy to restore liver production of IGF-1 via hepatic IGF-1 transgene (HIT). The resultant Li-GHRKO-HIT mouse model allowed us to dissect the roles of liver-derived IGF-1 in the pathogenesis of osteodystrophy during liver disease. We found that hepatic IGF-1 restored cortical bone acquisition, microarchitecture, and mechanical properties during growth in Li-GHRKO-HIT mice, which was maintained during aging. However, trabecular bone volume was not restored in the Li-GHRKO-HIT mice. We found increased bone resorption indices in vivo as well as increased basal reactive oxygen species and increased mitochondrial stress in osteoblast cultures from Li-GHRKO and the Li-GHRKO-HIT compared with control mice. Changes in systemic markers such as inflammatory cytokines, osteoprotegerin, osteopontin, parathyroid hormone, osteocalcin, or carboxy-terminal collagen cross-links could not fully account for the diminished trabecular bone in the Li-GHRKO-HIT mice. Thus, the reduced serum IGF-1 associated with hepatic osteodystrophy is a main determinant of low cortical but not trabecular bone mass. © 2017 American Society for Bone and Mineral Research.


Assuntos
Doenças Ósseas Metabólicas/sangue , Osso Esponjoso/patologia , Osso Cortical/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/patologia , Animais , Fenômenos Biomecânicos , Densidade Óssea , Doenças Ósseas Metabólicas/diagnóstico por imagem , Doenças Ósseas Metabólicas/fisiopatologia , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/fisiopatologia , Doença Crônica , Osso Cortical/diagnóstico por imagem , Osso Cortical/fisiopatologia , Citocinas/metabolismo , Fígado Gorduroso/sangue , Fígado Gorduroso/patologia , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Fator de Crescimento Insulin-Like I/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamanho do Órgão , Especificidade de Órgãos , Osteoblastos/patologia , Osteopontina/metabolismo , Osteoprotegerina/metabolismo , Receptores da Somatotropina/metabolismo , Transgenes , Microtomografia por Raio-X
13.
Endocrinology ; 157(12): 4526-4533, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27783536

RESUMO

Prostate cancer (PCa) is unique in its tendency to produce osteoblastic (OB) bone metastases. There are no existing therapies that specifically target the OB phase that affects 90% of men with bone metastatic disease. Prostatic acid phosphatase (PAP) is secreted by PCa cells in OB metastases and increases OB growth, differentiation, and bone mineralization. The purpose of this study was to investigate whether PAP effects on OB bone metastases are mediated by autocrine and/or paracrine alterations in the receptor activator of nuclear factor κ-B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. To investigate whether PAP modulated these factors and altered the bone reaction, we knocked down PAP expression in VCaP cells and stably overexpressed PAP in PC3M cells, both derived from human PCa bone metastases. We show that knockdown of PAP in VCaP cells decreased OPG while increasing RANK/RANKL expression. Forced overexpression of PAP in PC3M cells had the inverse effect, increasing OPG while decreasing RANK/RANKL expression. Coculture of PCa cells with MC3T3 preosteoblasts also revealed a role for secretory PAP in OB-PCa cross talk. Reduced PAP expression in VCaP cells decreased MC3T3 proliferation and differentiation and reduced their OPG expression. PAP overexpression in PC3M cells altered the bone phenotype creating OB rather than osteolytic lesions in vivo using an intratibial model. These findings demonstrate that PAP secreted by PCa cells in OB bone metastases increases OPG and plays a critical role in the vicious cross talk between cancer and bone cells. These data suggest that inhibition of secretory PAP may be an effective strategy for PCa OB bone lesions.


Assuntos
Fosfatase Ácida/metabolismo , Neoplasias Ósseas/metabolismo , Osteoblastos/metabolismo , Osteoprotegerina/metabolismo , Neoplasias da Próstata/metabolismo , Ligante RANK/metabolismo , Transdução de Sinais/genética , Fosfatase Ácida/genética , Animais , Neoplasias Ósseas/secundário , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos SCID , Osteoblastos/patologia , Neoplasias da Próstata/patologia , RNA Interferente Pequeno
14.
Growth Horm IGF Res ; 27: 7-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26843472

RESUMO

The contribution of the gonadotropic axis to skeletal sexual dimorphism (SSD) was clarified in recent years. Studies with animal models of estrogen receptor (ER) or androgen receptor (AR) null mice, as well as mice with bone cell-specific ablation of ER or AR, revealed that both hormones play major roles in skeletal acquisition, and that estrogen regulates skeletal accrual in both sexes. The growth hormone (GH) and its downstream effector, the insulin-like growth factor-1 (IGF-1) are also major determinants of peak bone mass during puberty and young adulthood, and play important roles in maintaining bone integrity during aging. A few studies in both humans and animal models suggest that in addition to the differences in sex steroid actions on bone, sex-specific effects of GH and IGF-1 play essential roles in SSD. However, the contributions of the somatotropic (GH/IGF-1) axis to SSD are controversial and data is difficult to interpret. GH/IGF-1 are pleotropic hormones that act in an endocrine and autocrine/paracrine fashion on multiple tissues, affecting body composition as well as metabolism. Thus, understanding the contribution of the somatotropic axis to SSD requires the use of mouse models that will differentiate between these two modes of action. Elucidation of the relative contribution of GH/IGF-1 axis to SSD is significant because GH is approved for the treatment of normal children with short stature and children with congenital growth disorders. Thus, if the GH/IGF-1 axis determines SSD, treatment with GH may be tailored according to sex. In the following review, we give an overview of the roles of sex steroids in determining SSD and how they may interact with the GH/IGF-1 axis in bone. We summarize several mouse models with impaired somatotropic axis and speculate on the possible contribution of that axis to SSD.


Assuntos
Desenvolvimento Ósseo/fisiologia , Hormônio do Crescimento/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Músculo Esquelético/fisiologia , Caracteres Sexuais , Animais , Camundongos , Transdução de Sinais
15.
J Bone Miner Res ; 31(7): 1356-65, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26852281

RESUMO

Osteocyte apoptosis is essential to activate bone remodeling in response to fatigue microdamage and estrogen withdrawal, such that apoptosis inhibition in vivo prevents the onset of osteoclastic resorption. Osteocyte apoptosis has also been spatially linked to bone resorption owing to disuse, but whether apoptosis plays a similar controlling role is unclear. We, therefore, 1) evaluated the spatial and temporal effects of disuse from hindlimb unloading (HLU) on osteocyte apoptosis, receptor activator of NF-κB ligand (RANKL) expression, bone resorption, and loss in mouse femora, and 2) tested whether osteocyte apoptosis was required to activate osteoclastic activity in cortical and trabecular bone by treating animals subjected to HLU with the pan-caspase apoptosis inhibitor, QVD (quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methylketone). Immunohistochemistry was used to identify apoptotic and RANKL-producing osteocytes in femoral diaphysis and distal trabecular bone, and µCT was used to determine the extent of trabecular bone loss owing to HLU. In both cortical and trabecular bone, 5 days of HLU increased osteocyte apoptosis significantly (3- and 4-fold, respectively, p < 0.05 versus Ctrl). At day 14, the apoptotic osteocyte number in femoral cortices declined to near control levels but remained elevated in trabeculae (3-fold versus Ctrl, p < 0.05). The number of osteocytes producing RANKL in both bone compartments was also significantly increased at day 5 of HLU (>1.5-fold versus Ctrl, p < 0.05) and further increased by day 14. Increases in osteocyte apoptosis and RANKL production preceded increases in bone resorption at both endocortical and trabecular surfaces. QVD completely inhibited not only the HLU-triggered increases in osteocyte apoptosis but also RANKL production and activation of bone resorption at both sites. Finally, µCT studies revealed that apoptosis inhibition completely prevented the trabecular bone loss caused by HLU. Together these data indicate that osteocyte apoptosis plays a central and controlling role in triggering osteocyte RANKL production and the activation of new resorption leading to bone loss in disuse. © 2016 American Society for Bone and Mineral Research.


Assuntos
Apoptose , Reabsorção Óssea/metabolismo , Osso Esponjoso/metabolismo , Osso Cortical/metabolismo , Fêmur/metabolismo , Elevação dos Membros Posteriores , Osteócitos/metabolismo , Ligante RANK/biossíntese , Animais , Reabsorção Óssea/diagnóstico por imagem , Osso Esponjoso/diagnóstico por imagem , Osso Cortical/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Masculino , Camundongos , Osteócitos/patologia , Microtomografia por Raio-X
16.
Am J Physiol Endocrinol Metab ; 309(3): E283-92, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26058861

RESUMO

Humanin (HN) is an endogenous mitochondria-associated peptide that has been shown to protect against various Alzheimer's disease-associated insults, myocardial ischemia-reperfusion injury, and reactive oxygen species-induced cell death. We have shown previously that HN improves whole body glucose homeostasis by improving insulin sensitivity and increasing glucose-stimulated insulin secretion (GSIS) from the ß-cells. Here, we report that intraperitoneal treatment with one of HN analogs, HNG, decreases body weight gain, visceral fat, and hepatic triglyceride (TG) accumulation in high-fat diet-fed mice. The decrease in hepatic TG accumulation is due to increased activity of hepatic microsomal triglyceride transfer protein (MTTP) and increased hepatic TG secretion. Both intravenous (iv) and intracerebroventricular (icv) infusion of HNG acutely increase TG secretion from the liver. Vagotomy blocks the effect on both iv and icv HNG on TG secretion, suggesting that the effects of HNG on hepatic TG flux are centrally mediated. Our data suggest that HN is a new player in central regulation of peripheral lipid metabolism.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Modelos Biológicos , Obesidade/metabolismo , Triglicerídeos/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Fármacos Antiobesidade/administração & dosagem , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Proteínas de Transporte/agonistas , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Fármacos do Sistema Nervoso Central/administração & dosagem , Fármacos do Sistema Nervoso Central/farmacologia , Fármacos do Sistema Nervoso Central/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Infusões Intravenosas , Infusões Intraventriculares , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/patologia , Peptídeos e Proteínas de Sinalização Intracelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/patologia , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Triglicerídeos/sangue , Vagotomia Troncular
17.
Aging Cell ; 13(3): 408-18, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24341939

RESUMO

In lower or simple species, such as worms and flies, disruption of the insulin-like growth factor (IGF)-1 and the insulin signaling pathways has been shown to increase lifespan. In rodents, however, growth hormone (GH) regulates IGF-1 levels in serum and tissues and can modulate lifespan via/or independent of IGF-1. Rodent models, where the GH/IGF-1 axis was ablated congenitally, show increased lifespan. However, in contrast to rodents where serum IGF-1 levels are high throughout life, in humans, serum IGF-1 peaks during puberty and declines thereafter during aging. Thus, animal models with congenital disruption of the GH/IGF-1 axis are unable to clearly distinguish between developmental and age-related effects of GH/IGF-1 on health. To overcome this caveat, we developed an inducible liver IGF-1-deficient (iLID) mouse that allows temporal control of serum IGF-1. Deletion of liver Igf-1 gene at one year of age reduced serum IGF-1 by 70% and dramatically impaired health span of the iLID mice. Reductions in serum IGF-1 were coupled with increased GH levels and increased basal STAT5B phosphorylation in livers of iLID mice. These changes were associated with increased liver weight, increased liver inflammation, increased oxidative stress in liver and muscle, and increased incidence of hepatic tumors. Lastly, despite elevations in serum GH, low levels of serum IGF-1 from 1 year of age compromised skeletal integrity and accelerated bone loss. We conclude that an intact GH/IGF-1 axis is essential to maintain health span and that elevated GH, even late in life, associates with increased pathology.


Assuntos
Envelhecimento/metabolismo , Fator de Crescimento Insulin-Like I/deficiência , Envelhecimento/sangue , Animais , Feminino , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Modelos Animais , Estresse Oxidativo/fisiologia
18.
Endocr Relat Cancer ; 20(3): 391-401, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23572162

RESUMO

The Her2 oncogene is expressed in ∼25% of human breast cancers and is associated with metastatic progression and poor outcome. Epidemiological studies report that breast cancer incidence and mortality rates are higher in women with type 2 diabetes. Here, we use a mouse model of Her2-mediated breast cancer on a background of hyperinsulinemia to determine how elevated circulating insulin levels affect Her2-mediated primary tumor growth and lung metastasis. Hyperinsulinemic (MKR(+/+)) mice were crossed with doxycycline-inducible Neu-NT (MTB/TAN) mice to produce the MTB/TAN/MKR(+/+) mouse model. Both MTB/TAN and MTB/TAN/MKR(+/+) mice were administered doxycycline in drinking water to induce Neu-NT mammary tumor formation. In tumor tissues removed at 2, 4, and 6 weeks of Neu-NT overexpression, we observed increased tumor mass and higher phosphorylation of the insulin receptor/IGF1 receptor, suggesting that activation of these receptors in conditions of hyperinsulinemia could contribute to the increased growth of mammary tumors. After 12 weeks on doxycycline, although no further increase in tumor weight was observed in MTB/TAN/MKR(+/+) compared with MTB/TAN mice, the number of lung metastases was significantly higher in MTB/TAN/MKR(+/+) mice compared with controls (MTB/TAN/MKR(+/+) 16.41±4.18 vs MTB/TAN 5.36±2.72). In tumors at the 6-week time point, we observed an increase in vimentin, a cytoskeletal protein and marker of mesenchymal cells, associated with epithelial-to-mesenchymal transition and cancer-associated fibroblasts. We conclude that hyperinsulinemia in MTB/TAN/MKR(+/+) mice resulted in larger primary tumors, with more mesenchymal cells and therefore more aggressive tumors with more numerous pulmonary metastases.


Assuntos
Hiperinsulinismo/complicações , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Animais/patologia , Animais , Humanos , Hiperinsulinismo/patologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , Receptor ErbB-2
19.
J Hepatol ; 58(5): 1000-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23353867

RESUMO

BACKGROUND & AIMS: Dysregulated glucose homeostasis and lipid accumulation characterize non-alcoholic fatty liver disease (NAFLD), but underlying mechanisms are obscure. We report here that Krüppel-like factor 6 (KLF6), a ubiquitous transcription factor that promotes adipocyte differentiation, also provokes the metabolic abnormalities of NAFLD by post-transcriptionally activating PPARα-signaling. METHODS: Mice with either hepatocyte-specific depletion of KLF6 ('ΔHepKlf6') or global KLF6 heterozygosity (Klf6+/-) were fed a high fat diet (HFD) or chow for 8 or 16 weeks. Glucose and insulin tolerance tests were performed to assess insulin sensitivity. Overexpression and knockdown of KLF6 in cultured cells enabled the elucidation of underlying mechanisms. In liver samples from a cohort of 28 NAFLD patients, the expression of KLF6-related target genes was quantified. RESULTS: Mice with global- or hepatocyte-depletion of KLF6 have reduced body fat content and improved glucose and insulin tolerance, and are protected from HFD-induced steatosis. In hepatocytes, KLF6 deficiency reduces PPARα-regulated genes (Trb3, Pepck) with diminished PPARα protein but no change in Pparα mRNA, which is explained by the discovery that KLF6 represses miRNA 10b, which leads to induction of PPARα. In NAFLD patients with advanced disease and inflammation, the expression of miRNA 10b is significantly downregulated, while PEPCK mRNA is upregulated; KLF6 mRNA expression also correlates with TRB3 as well as PEPCK gene expression. CONCLUSIONS: KLF6 increases PPARα activity, whereas KLF6 loss leads to PPARα repression and attenuation of lipid and glucose abnormalities associated with a high fat diet. The findings establish KLF6 as a novel regulator of hepatic glucose and lipid metabolism in fatty liver.


Assuntos
Fígado Gorduroso/fisiopatologia , Fatores de Transcrição Kruppel-Like/fisiologia , PPAR alfa/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologia , Animais , Células Cultivadas , Estudos de Coortes , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Fator 6 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/metabolismo
20.
Endocrinol Metab Clin North Am ; 41(2): 231-47, v, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22682628

RESUMO

Insulin-like growth factor 1 (IGF-1) is a pleiotropic polypeptide. Its expression is tightly regulated and it plays significant roles during early development, maturation, and adulthood. This article discusses the roles of IGF-1 in determination of body size, skeletal acquisition, muscle growth, carbohydrate metabolism, and longevity, as learned from mouse models.


Assuntos
Fator de Crescimento Insulin-Like I/fisiologia , Modelos Animais , Animais , Tamanho Corporal/fisiologia , Feminino , Humanos , Fator de Crescimento Insulin-Like II/fisiologia , Metabolismo dos Lipídeos , Longevidade/fisiologia , Masculino , Camundongos , Músculo Esquelético/fisiologia , Reprodução/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA