Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 618(7966): 808-817, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37344645

RESUMO

Niche signals maintain stem cells in a prolonged quiescence or transiently activate them for proper regeneration1. Altering balanced niche signalling can lead to regenerative disorders. Melanocytic skin nevi in human often display excessive hair growth, suggesting hair stem cell hyperactivity. Here, using genetic mouse models of nevi2,3, we show that dermal clusters of senescent melanocytes drive epithelial hair stem cells to exit quiescence and change their transcriptome and composition, potently enhancing hair renewal. Nevus melanocytes activate a distinct secretome, enriched for signalling factors. Osteopontin, the leading nevus signalling factor, is both necessary and sufficient to induce hair growth. Injection of osteopontin or its genetic overexpression is sufficient to induce robust hair growth in mice, whereas germline and conditional deletions of either osteopontin or CD44, its cognate receptor on epithelial hair cells, rescue enhanced hair growth induced by dermal nevus melanocytes. Osteopontin is overexpressed in human hairy nevi, and it stimulates new growth of human hair follicles. Although broad accumulation of senescent cells, such as upon ageing or genotoxic stress, is detrimental for the regenerative capacity of tissue4, we show that signalling by senescent cell clusters can potently enhance the activity of adjacent intact stem cells and stimulate tissue renewal. This finding identifies senescent cells and their secretome as an attractive therapeutic target in regenerative disorders.


Assuntos
Cabelo , Melanócitos , Transdução de Sinais , Animais , Camundongos , Cabelo/citologia , Cabelo/crescimento & desenvolvimento , Folículo Piloso/citologia , Folículo Piloso/fisiologia , Receptores de Hialuronatos/metabolismo , Melanócitos/citologia , Melanócitos/metabolismo , Nevo/metabolismo , Nevo/patologia , Osteopontina/metabolismo , Células-Tronco/citologia
2.
Sci Adv ; 6(49)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33277245

RESUMO

Macrophages are innate immune cells that adhere to the extracellular matrix within tissues. However, how matrix properties regulate their function remains poorly understood. Here, we report that the adhesive microenvironment tunes the macrophage inflammatory response through the transcriptional coactivator YAP. We find that adhesion to soft hydrogels reduces inflammation when compared to adhesion on stiff materials and is associated with reduced YAP expression and nuclear localization. Substrate stiffness and cytoskeletal polymerization, but not adhesive confinement nor contractility, regulate YAP localization. Furthermore, depletion of YAP inhibits macrophage inflammation, whereas overexpression of active YAP increases inflammation. Last, we show in vivo that soft materials reduce expression of inflammatory markers and YAP in surrounding macrophages when compared to stiff materials. Together, our studies identify YAP as a key molecule for controlling inflammation and sensing stiffness in macrophages and may have broad implications in the regulation of macrophages in health and disease.


Assuntos
Mecanotransdução Celular , Proteínas de Sinalização YAP , Matriz Extracelular/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos , Mecanotransdução Celular/fisiologia
3.
J Dermatol ; 47(2): 166-168, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31793058

RESUMO

Hematidrosis is a rare disorder involving spontaneous excretion of sweat contaminated by blood cells. We report the case of a 6-year-old girl with hematidrosis from her palms with no underlying disease or psychotic disorder. Before the onset of this symptom, the patient was given an indoor horizontal exercise bar with which she had been frequently playing. This symptom appeared without apparent triggers and was not associated with subjective symptoms. To examine her hematidrosis, metabolites in the red bodily fluid were analyzed using nuclear magnetic resonance analysis. We found the fluid had a metabolome profile similar to that of eccrine sweat. Pathological analysis revealed no abnormal findings, including expression of the tight junction protein claudin 3. Her symptom decreased after treatment with tap-water iontophoresis. Here, we describe our case and discuss its etiology by reviewing previous reports.


Assuntos
Hemorragia/diagnóstico , Hiperidrose/diagnóstico , Iontoforese/métodos , Doenças Raras/diagnóstico , Suor/química , Suor/citologia , Biópsia , Criança , Feminino , Mãos/patologia , Hemorragia/etiologia , Humanos , Hiperidrose/etiologia , Doenças Raras/etiologia , Pele/patologia , Água/administração & dosagem
4.
Nat Commun ; 10(1): 650, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737373

RESUMO

During wound healing in adult mouse skin, hair follicles and then adipocytes regenerate. Adipocytes regenerate from myofibroblasts, a specialized contractile wound fibroblast. Here we study wound fibroblast diversity using single-cell RNA-sequencing. On analysis, wound fibroblasts group into twelve clusters. Pseudotime and RNA velocity analyses reveal that some clusters likely represent consecutive differentiation states toward a contractile phenotype, while others appear to represent distinct fibroblast lineages. One subset of fibroblasts expresses hematopoietic markers, suggesting their myeloid origin. We validate this finding using single-cell western blot and single-cell RNA-sequencing on genetically labeled myofibroblasts. Using bone marrow transplantation and Cre recombinase-based lineage tracing experiments, we rule out cell fusion events and confirm that hematopoietic lineage cells give rise to a subset of myofibroblasts and rare regenerated adipocytes. In conclusion, our study reveals that wounding induces a high degree of heterogeneity among fibroblasts and recruits highly plastic myeloid cells that contribute to adipocyte regeneration.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Análise de Célula Única/métodos , Pele/citologia , Células-Tronco/citologia , Animais , Western Blotting , Células Cultivadas , Feminino , Masculino , Camundongos , Análise de Sequência de RNA , Células-Tronco/metabolismo , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA