Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stroke ; 44(2): 551-4, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23238858

RESUMO

BACKGROUND AND PURPOSE: Perinatal hypoxia-ischemia (HI) has high rates of neurological deficits and mortality. So far, no effective treatment for HI brain injury has been developed. In this study, we investigated the therapeutic effects of stem cells from human exfoliated deciduous teeth (SHED) for the treatment of neonatal HI brain injury. METHODS: Unilateral HI was induced in postnatal day 5 (P5) mice. Twenty-four hours later, SHED, human skin fibroblasts, or serum-free conditioned medium derived from these cells was injected into the injured brain. The effects of cell transplantation or conditioned medium injection on the animals' neurological and pathophysiological recovery were evaluated. RESULTS: Transplanted SHED, but not fibroblasts, significantly reduced the HI-induced brain-tissue loss and improved neurological function. SHED also improved the survival of the HI mice. The engrafted SHED rarely differentiated into neural lineages; however, their transplantation inhibited the expression of proinflammatory cytokines, increased the expression of anti-inflammatory ones, and significantly reduced apoptosis. Notably, the intracerebral administration of SHED-conditioned medium also significantly improved the neurological outcome, inhibited apoptosis, and reduced tissue loss. CONCLUSIONS: SHED transplantation into the HI-injured brain resulted in remarkable neurological and pathophysiological recovery. Our findings indicate that paracrine factors derived from SHED support a neuroprotective microenvironment in the HI brain. SHED graft and SHED-conditioned medium may provide a novel neuroprotective therapy for HI.


Assuntos
Lesões Encefálicas/cirurgia , Polpa Dentária/citologia , Polpa Dentária/transplante , Hipóxia-Isquemia Encefálica/cirurgia , Transplante de Células-Tronco/métodos , Animais , Animais Recém-Nascidos , Lesões Encefálicas/patologia , Células Cultivadas , Humanos , Hipóxia-Isquemia Encefálica/patologia , Camundongos
2.
J Clin Invest ; 122(1): 80-90, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22133879

RESUMO

Spinal cord injury (SCI) often leads to persistent functional deficits due to loss of neurons and glia and to limited axonal regeneration after injury. Here we report that transplantation of human dental pulp stem cells into the completely transected adult rat spinal cord resulted in marked recovery of hind limb locomotor functions. Transplantation of human bone marrow stromal cells or skin-derived fibroblasts led to substantially less recovery of locomotor function. The human dental pulp stem cells exhibited three major neuroregenerative activities. First, they inhibited the SCI-induced apoptosis of neurons, astrocytes, and oligodendrocytes, which improved the preservation of neuronal filaments and myelin sheaths. Second, they promoted the regeneration of transected axons by directly inhibiting multiple axon growth inhibitors, including chondroitin sulfate proteoglycan and myelin-associated glycoprotein, via paracrine mechanisms. Last, they replaced lost cells by differentiating into mature oligodendrocytes under the extreme conditions of SCI. Our data demonstrate that tooth-derived stem cells may provide therapeutic benefits for treating SCI through both cell-autonomous and paracrine neuroregenerative activities.


Assuntos
Células-Tronco Adultas/transplante , Polpa Dentária/citologia , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Apoptose , Astrócitos/patologia , Diferenciação Celular , Sobrevivência Celular , Meios de Cultivo Condicionados , Feminino , Fibroblastos/transplante , Membro Posterior , Humanos , Locomoção/fisiologia , Bainha de Mielina/patologia , Neurônios/patologia , Oligodendroglia/patologia , Comunicação Parácrina , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Células Estromais/transplante , Transplante Heterólogo , Proteínas rho de Ligação ao GTP/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA