Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473806

RESUMO

Cisplatin nephrotoxicity is a critical limitation of solid cancer treatment. Until now, the complex interplay of various pathophysiological mechanisms leading to proximal tubular cell apoptosis after cisplatin exposure has not been fully understood. In our study, we assessed the role of the autophagy-related protein BECLIN1 (ATG6) in cisplatin-induced acute renal injury (AKI)-a candidate protein involved in autophagy and with putative impact on apoptosis by harboring a B-cell lymphoma 2 (BCL2) interaction site of unknown significance. By using mice with heterozygous deletion of Becn1, we demonstrate that reduced intracellular content of BECLIN1 does not impact renal function or autophagy within 12 months. However, these mice were significantly sensitized towards cisplatin-induced AKI, and by using Becn1+/-;Sglt2-Cre;Tomato/EGFP mice with subsequent primary cell analysis, we confirmed that nephrotoxicity depends on proximal tubular BECLIN1 content. Mechanistically, BECLIN1 did not impact autophagy or primarily the apoptotic pathway. In fact, a lack of BECLIN1 sensitized mice towards cisplatin-induced ER stress. Accordingly, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) blunted cisplatin-induced cell death in Becn1 heterozygosity. In conclusion, our data first highlight a novel role of BECLIN1 in protecting against cellular ER stress independent from autophagy. These novel findings open new therapeutic avenues to intervene in this important intracellular stress response pathway with a promising impact on future AKI management.


Assuntos
Injúria Renal Aguda , Cisplatino , Camundongos , Animais , Cisplatino/farmacologia , Proteína Beclina-1/metabolismo , Injúria Renal Aguda/metabolismo , Autofagia , Apoptose
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354758

RESUMO

For the advancement of DKD treatment, identifying unrecognized residual risk factors is essential. We explored the impact of obesity diversity derived from different carbohydrate qualities, with an emphasis on the increasing trend of excessive fructose consumption and its effect on DKD progression. In this study, we utilized db/db mice to establish a novel diabetic model characterized by fructose overconsumption, aiming to uncover the underlying mechanisms of renal damage. Compared to the control diet group, the fructose-fed db/db mice exhibited more pronounced obesity yet demonstrated milder glucose intolerance. Plasma cystatin C levels were elevated in the fructose model compared to the control, and this elevation was accompanied by enhanced glomerular sclerosis, even though albuminuria levels and tubular lesions were comparable. Single-cell RNA sequencing of the whole kidney highlighted an increase in Lrg1 in glomerular endothelial cells (GECs) in the fructose model, which appeared to drive mesangial fibrosis through enhanced TGF-ß1 signaling. Our findings suggest that excessive fructose intake exacerbates diabetic kidney disease progression, mediated by aberrant Lrg1-driven crosstalk between GECs and mesangial cells.


Assuntos
Nefropatias Diabéticas , Células Mesangiais , Camundongos , Animais , Células Endoteliais/patologia , Frutose/efeitos adversos , Nefropatias Diabéticas/patologia , Camundongos Endogâmicos , Obesidade/complicações , Comunicação Celular
3.
Physiology (Bethesda) ; 39(3): 0, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260943

RESUMO

The discovery of insulin approximately a century ago greatly improved the management of diabetes, including many of its life-threatening acute complications like ketoacidosis. This breakthrough saved many lives and extended the healthy lifespan of many patients with diabetes. However, there is still a negative perception of ketone bodies stemming from ketoacidosis. Originally, ketone bodies were thought of as a vital source of energy during fasting and exercise. Furthermore, in recent years, research on calorie restriction and its potential impact on extending healthy lifespans, as well as studies on ketone bodies, have gradually led to a reevaluation of the significance of ketone bodies in promoting longevity. Thus, in this review, we discuss the emerging and hidden roles of ketone bodies in various organs, including the heart, kidneys, skeletal muscles, and brain, as well as their potential impact on malignancies and lifespan.


Assuntos
Diabetes Mellitus , Cetose , Humanos , Corpos Cetônicos , Longevidade , Coração
4.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409185

RESUMO

Vascular endothelial growth factor A (VEGFA) secretion from podocytes is crucial for maintaining endothelial integrity within the glomerular filtration barrier. However, until now, the molecular mechanisms underlying podocyte secretory function remained unclear. Through podocyte-specific deletion of BECLIN1 (ATG6 or Becn1), a key protein in autophagy initiation, we identified a major role for this molecule in anterograde Golgi trafficking. The Becn1-deficient podocytes displayed aberrant vesicle formation in the trans-Golgi network (TGN), leading to dramatic vesicle accumulation and complex disrupted patterns of intracellular vesicle trafficking and membrane dynamics. Phenotypically, podocyte-specific deletion of Becn1 resulted in early-onset glomerulosclerosis, which rapidly progressed and dramatically reduced mouse life span. Further, in vivo and in vitro studies clearly showed that VEGFA secretion, and thereby endothelial integrity, greatly depended on BECLIN1 availability and function. Being the first to demonstrate the importance of a secretory pathway for podocyte integrity and function, we identified BECLIN1 as a key component in this complex cellular process. Functionally, by promoting VEGFA secretion, a specific secretory pathway emerged as an essential component for the podocyte-endothelial crosstalk that maintains the glomerular filtration barrier.


Assuntos
Podócitos , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Barreira de Filtração Glomerular/metabolismo , Camundongos , Podócitos/metabolismo , Via Secretória , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Intern Med ; 61(20): 3077-3081, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35283375

RESUMO

Fabry disease is an inherited lysosomal disorder caused by mutations in the alpha-galactosidase A gene. We herein report a Fabry disease patient with enzyme replacement therapy (ERT)-resistant proteinuria who showed improvement in the estimated glomerular filtration rate (eGFR) decline rate after uric acid (UA)-lowering therapy. The patient was diagnosed with Fabry disease at 36 years old. After that, even under ERT, proteinuria and eGFR decline persisted. During the clinical course, serum UA levels were elevated with increases in renal tubular damage markers. Febuxostat administration immediately improved tubular damage and prevented further eGFR decline. UA-mediated tubulopathy may become an additional therapeutic target for eGFR decline in Fabry disease.


Assuntos
Doença de Fabry , Hiperuricemia , Adulto , Terapia de Reposição de Enzimas , Doença de Fabry/complicações , Doença de Fabry/tratamento farmacológico , Febuxostat/uso terapêutico , Taxa de Filtração Glomerular , Humanos , Hiperuricemia/tratamento farmacológico , Proteinúria/tratamento farmacológico , Proteinúria/etiologia , Resultado do Tratamento , Ácido Úrico , alfa-Galactosidase/genética , alfa-Galactosidase/uso terapêutico
6.
Clin Exp Nephrol ; 18(3): 487-91, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23921417

RESUMO

BACKGROUND: Because oral nonsteroidal anti-inflammatory drugs (NSAIDs) have adverse effects on kidney function, patients with kidney diseases are administered these drugs as transdermal patches. Little is known about the effects of NSAID patches on renal function. We therefore assessed the effects of topical loxoprofen sodium on kidney function in type 2 diabetic patients with overt nephropathy. METHODS: Twenty patients with type 2 diabetes and overt proteinuria and with knee and/or low back pain were treated with skin patches containing 100 mg loxoprofen on the knee or back for 24 h per day for 5 consecutive days. The degree of pain was assessed using a visual analogue scale (VAS). Blood and 24-h urine samples were obtained at baseline and at the end of the study. Glomerular filtration rate (GFR) was estimated from serum creatinine and cystatin C concentrations. RESULTS: The 20 patients consisted of 11 males and 9 females, of mean age 61.6 ± 13.9 years. Loxoprofen-containing patches significantly reduced VAS pain without affecting blood pressure, GFR or urinary prostaglandin E2 concentration. Serum concentrations of loxoprofen and its active trans-OH metabolite did not correlate with GFR. CONCLUSIONS: Loxoprofen-containing patches do not affect renal function in type 2 diabetic patients with overt nephropathy over a short-term period. Long-term studies are needed to clarify the safety of loxoprofen-containing patches in patients with chronic kidney diseases.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/tratamento farmacológico , Fenilpropionatos/efeitos adversos , Fenilpropionatos/uso terapêutico , Adesivo Transdérmico , Adulto , Idoso , Idoso de 80 Anos ou mais , Anti-Inflamatórios não Esteroides/administração & dosagem , Pressão Sanguínea/fisiologia , Creatinina/sangue , Cistatina C/sangue , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/fisiopatologia , Dinoprostona/urina , Relação Dose-Resposta a Droga , Feminino , Taxa de Filtração Glomerular/fisiologia , Humanos , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fenilpropionatos/administração & dosagem , Resultado do Tratamento
7.
J Am Soc Nephrol ; 24(11): 1769-81, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24092929

RESUMO

Obesity is an independent risk factor for renal dysfunction in patients with CKDs, including diabetic nephropathy, but the mechanism underlying this connection remains unclear. Autophagy is an intracellular degradation system that maintains intracellular homeostasis by removing damaged proteins and organelles, and autophagy insufficiency is associated with the pathogenesis of obesity-related diseases. We therefore examined the role of autophagy in obesity-mediated exacerbation of proteinuria-induced proximal tubular epithelial cell damage in mice and in human renal biopsy specimens. In nonobese mice, overt proteinuria, induced by intraperitoneal free fatty acid-albumin overload, led to mild tubular damage and apoptosis, and activated autophagy in proximal tubules reabsorbing urinary albumin. In contrast, diet-induced obesity suppressed proteinuria-induced autophagy and exacerbated proteinuria-induced tubular cell damage. Proximal tubule-specific autophagy-deficient mice, resulting from an Atg5 gene deletion, subjected to intraperitoneal free fatty acid-albumin overload developed severe proteinuria-induced tubular damage, suggesting that proteinuria-induced autophagy is renoprotective. Mammalian target of rapamycin (mTOR), a potent suppressor of autophagy, was activated in proximal tubules of obese mice, and treatment with an mTOR inhibitor ameliorated obesity-mediated autophagy insufficiency. Furthermore, both mTOR hyperactivation and autophagy suppression were observed in tubular cells of specimens obtained from obese patients with proteinuria. Thus, in addition to enhancing the understanding of obesity-related cell vulnerability in the kidneys, these results suggest that restoring the renoprotective action of autophagy in proximal tubules may improve renal outcomes in obese patients.


Assuntos
Autofagia/fisiologia , Túbulos Renais Proximais/patologia , Obesidade/complicações , Proteinúria/complicações , Animais , Células Cultivadas , Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Células Epiteliais/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA