Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(7): 114403, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38943639

RESUMO

Ferroptosis is a type of regulated cell death characterized by iron-dependent lipid peroxidation. A model cell system is constructed to induce ferroptosis by re-expressing the transcription factor BACH1, a potent ferroptosis inducer, in immortalized mouse embryonic fibroblasts (iMEFs). The transfer of the culture supernatant from ferroptotic iMEFs activates the proliferation of hepatoma cells and other fibroblasts and suppresses cellular senescence-like features. The BACH1-dependent secretion of the longevity factor FGF21 is increased in ferroptotic iMEFs. The anti-senescent effects of the culture supernatant from these iMEFs are abrogated by Fgf21 knockout. BACH1 activates the transcription of Fgf21 by promoting ferroptotic stress and increases FGF21 protein expression by suppressing its autophagic degradation through transcriptional Sqstm1 and Lamp2 repression. The BACH1-induced ferroptotic FGF21 secretion suppresses obesity in high-fat diet-fed mice and the short lifespan of progeria mice. The inhibition of these aging-related phenotypes can be physiologically significant regarding ferroptosis.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Senescência Celular , Ferroptose , Fatores de Crescimento de Fibroblastos , Obesidade , Animais , Ferroptose/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Obesidade/metabolismo , Obesidade/patologia , Camundongos , Longevidade , Humanos , Camundongos Endogâmicos C57BL , Fibroblastos/metabolismo , Autofagia , Dieta Hiperlipídica , Camundongos Knockout , Masculino , Proteína Sequestossoma-1/metabolismo
2.
J Biochem ; 174(3): 239-252, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37094356

RESUMO

Ferroptosis is a regulated cell death induced by iron-dependent lipid peroxidation. The heme-responsive transcription factor BTB and CNC homology 1 (BACH1) promotes ferroptosis by repressing the transcription of genes involved in glutathione (GSH) synthesis and intracellular labile iron metabolism, which are key regulatory pathways in ferroptosis. We found that BACH1 re-expression in Bach1-/- immortalized mouse embryonic fibroblasts (iMEFs) can induce ferroptosis upon 2-mercaptoethanol removal, without any ferroptosis inducers. In these iMEFs, GSH synthesis was reduced, and intracellular labile iron levels were increased upon BACH1 re-expression. We used this system to investigate whether the major ferroptosis regulators glutathione peroxidase 4 (Gpx4) and apoptosis-inducing factor mitochondria-associated 2 (Aifm2), the gene for ferroptosis suppressor protein 1, are target genes of BACH1. Neither Gpx4 nor Aifm2 was regulated by BACH1 in the iMEFs. However, we found that BACH1 represses AIFM2 transcription in human pancreatic cancer cells. These results suggest that the ferroptosis regulators targeted by BACH1 may vary across different cell types and animal species. Furthermore, we confirmed that the ferroptosis induced by BACH1 re-expression exhibited a propagating effect. BACH1 re-expression represents a new strategy for inducing ferroptosis after GPX4 or system Xc- suppression and is expected to contribute to future ferroptosis research.


Assuntos
Ferroptose , Fibroblastos , Animais , Humanos , Camundongos , Fibroblastos/metabolismo , Ferroptose/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ferro/metabolismo , Glutationa/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
3.
Surg Today ; 53(5): 633-639, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36764935

RESUMO

Recent advances in the development of chemotherapies have helped improve the prognosis of pancreatic ductal adenocarcinoma (PDAC). However, predicting factors for the outcomes of chemotherapies (either gemcitabine or S-1) have not yet been established. We analyzed the expression of 4 major epithelial-to-mesenchymal transition-inducing transcription factors in 38 PDAC patients who received adjuvant chemotherapy after radical resection to examine the association with patients' prognoses. The TWIST1-positive group showed a significantly poorer prognosis than the TWIST1-negative group for both the relapse-free survival (median survival time [MST] of 8.9 vs. 18.5 months, P = 0.016) and the overall survival (MST of 15.2 vs. 33.4 months, P = 0.023). A multivariate analysis revealed that TWIST1 positivity was an independent prognostic factor for a poor response to adjuvant chemotherapies (hazard ratio 2.61; 95% confidence interval 1.10-6.79; P = 0.029). These results suggest that TWIST1 can be utilized as an important poor prognostic factor for radically resected PDAC patients with adjuvant chemotherapy, potentially including neoadjuvant therapy using these agents.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Terapia Neoadjuvante , Prognóstico , Recidiva Local de Neoplasia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/cirurgia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/cirurgia , Carcinoma Ductal Pancreático/patologia , Quimioterapia Adjuvante , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas Nucleares/genética , Proteínas Nucleares/uso terapêutico , Proteína 1 Relacionada a Twist/genética , Neoplasias Pancreáticas
4.
FEBS J ; 290(7): 1688-1704, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35107212

RESUMO

Ferroptosis is triggered by a chain of intracellular labile iron-dependent peroxidation of cell membrane phospholipids. Ferroptosis is important not only as a cause of ischaemic and neurodegenerative diseases but also as a mechanism of cancer suppression, and a better understanding of its regulatory mechanism is required. It has become clear that ferroptosis is finely controlled by two oxidative stress-responsive transcription factors, NRF2 (NF-E2-related factor 2) and BACH1 (BTB and CNC homology 1). NRF2 and BACH1 inhibit and promote ferroptosis, respectively, by activating or suppressing the expression of genes in the major regulatory pathways of ferroptosis: intracellular labile iron metabolism, the GSH (glutathione) -GPX4 (glutathione peroxidase 4) pathway and the FSP1 (ferroptosis suppressor protein 1)-CoQ (coenzyme Q) pathway. In addition to this, NRF2 and BACH1 control ferroptosis through the regulation of lipid metabolism and cell differentiation. This multifaceted regulation of ferroptosis by NRF2 and BACH1 is considered to have been acquired during the evolution of multicellular organisms, allowing the utilization of ferroptosis for maintaining homeostasis, including cancer suppression. In terms of cell-cell interaction, it has been revealed that ferroptosis has the property of propagating to surrounding cells along with lipid peroxidation. The regulation of ferroptosis by NRF2 and BACH1 and the propagation phenomenon could be used to realize anticancer cell therapy in the future. In this review, these points will be summarized and discussed.


Assuntos
Ferroptose , Neoplasias , Humanos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ferroptose/genética , Ferro/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
5.
Clin Cancer Res ; 25(22): 6756-6763, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31383733

RESUMO

PURPOSE: The epithelial-to-mesenchymal transition, the major process by which some cancer cells convert from an epithelial phenotype to a mesenchymal one, has been suggested to drive chemo-resistance and/or metastasis in patients with cancer. However, only a few studies have demonstrated the presence of CD45/CD326 doubly-positive cells (CD45/CD326 DPC) in cancer. We deployed a combination of cell surface markers to elucidate the phenotypic heterogeneity in non-small cell lung cancer (NSCLC) cells and identified a new subpopulation that is doubly-positive for epithelial and non-epithelial cell-surface markers in both NSCLC cells and patients' malignant pleural effusions. EXPERIMENTAL DESIGN: We procured a total of 39 patients' samples, solid fresh lung cancer tissues from 21 patients and malignant pleural effusion samples from 18 others, and used FACS and fluorescence microscopy to check their surface markers. We also examined the EGFR mutations in patients with known acquired EGFR mutations. RESULTS: Our data revealed that 0.4% to 17.9% of the solid tumor tissue cells and a higher percentage of malignant pleural effusion cells harbored CD45/CD326 DPC expressing both epithelial and nonepithelial surface markers. We selected 3 EGFR mutation patients and genetically confirmed that the newly identified cell population really originated from cancer cells. We also found that higher proportions of CD45/CD326 DPC are significantly associated with poor prognosis. CONCLUSIONS: In conclusion, varying percentages of CD45/CD326 DPC exist in both solid cancer tissue and malignant pleural effusion in patients with NSCLC. This CD45/CD326 doubly-positive subpopulation can be an important key to clinical management of patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Molécula de Adesão da Célula Epitelial/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/patologia , Análise Mutacional de DNA , Transição Epitelial-Mesenquimal , Receptores ErbB/genética , Feminino , Humanos , Imunofenotipagem , Neoplasias Pulmonares/patologia , Masculino , Mutação , Prognóstico
6.
Cancer Med ; 8(4): 1671-1678, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30791220

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer, mainly because of its invasive and metastatic characteristics. Pancreatic intraepithelial neoplasia (PanIN) is one of the major precursor lesions of PDAC. Although epithelial-to-mesenchymal transition (EMT) is known to play an important role for these malignant behaviors, the association between PanIN and EMT has not been clearly understood. Therefore, we explored possible molecules for regulation of EMT immunohistochemically. Using surgically resected specimens from 71 PDAC patients, expressions of SNAIL, SLUG, TWIST1, and ZEB1 were investigated in high-grade PanIN (HG-PanIN) and PDAC. Results demonstrated that PDAC accompanied by SNAIL-positive HG-PanIN showed a significantly better relapse-free survival (RFS) (median survival time (MST) of 11.3 months vs 4.4 months, P < 0.001) and overall survival overall survival (OS) (MST of 25.2 months vs 13.6 months, P < 0.001). In PDAC accompanied by SLUG-positive HG-PanIN, RFS and OS (P = 0.09 and P = 0.05) tended to have a better prognosis. In contrast, we could not find any significant prognostic benefits in the expression of TWIST1 or ZEB1 in PDAC accompanied by HG-PanIN. Our present results suggest that (1) EMT may play an important role in the development of PDAC from HG-PanIN, and (2) SNAIL may predict a distinct subgroup that shows a better prognosis.


Assuntos
Carcinoma in Situ/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Fatores de Transcrição da Família Snail/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Prognóstico , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias Pancreáticas
7.
Tohoku J Exp Med ; 245(2): 99-105, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925701

RESUMO

Pheochromocytomas and paragangliomas are neuroendocrine tumors which arise from adrenal medulla, and sympathetic or parasympathetic nerves, respectively. Hereditary cases afflicted by both or either pheochromocytomas and paragangliomas have been reported: these are called hereditary pheochromocytoma/paraganglioma syndromes (HPPS). Many cases of HPPS are caused by mutations of one of the succinate dehydrogenase (SDH) genes; mainly SDHB and SDHD that encode subunits for the mitochondrial respiratory chain complex II. In this study, we investigated mutations of SDH genes in six HPPS patients from four Japanese pedigrees using peripheral blood lymphocytes (from one patient with pheochromocytoma and five patients with neck paraganglioma) and tumor tissues (from two patients with paraganglioma). Results showed that all of these pedigrees harbor germline mutations in one of the SDH genes. In two pedigrees, a novel IVS2-2A>C mutation in SDHB, at the acceptor-site in intron 2, was found, and the tumor RNA of the patient clearly showed frameshift caused by exon skipping. Each of the remaining two pedigrees harbors a reported missense mutation, R242H in SDHB or G106D in SDHD. Importantly, all these mutations are heterozygous in constitutional DNAs, and two-hit mutations were evident in tumor DNAs. We thus conclude that the newly identified IVS2-2A>C mutation in SDHB is responsible for HPPS. The novel mutation revealed by our study may contribute to improvement of clinical management for patients with HPPS.


Assuntos
Mutação/genética , Paraganglioma/genética , Feocromocitoma/genética , Succinato Desidrogenase/genética , Sequência de Bases , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Linhagem , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA