Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(7): e0271171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35816482

RESUMO

Among increasing eye diseases, glaucoma may hurt the optic nerves and lead to vision loss, the treatment of which is to reduce intraocular pressure (IOP). In this research, we introduce a new concept of the surgery simulator for Minimally Invasive Glaucoma Surgery (MIGS). The concept is comprised of an anterior eye model and a fluidic circulatory system. The model made of flexible material includes a channel like the Schlemm's canal (SC) and a membrane like the trabecular meshwork (TM) covering the SC. The system can monitor IOP in the model by a pressure sensor. In one of the MIGS procedures, the TM is cleaved to reduce the IOP. Using the simulator, ophthalmologists can practice the procedure and measure the IOP. First, considering the characteristics of human eyes, we defined requirements and target performances for the simulator. Next, we designed and manufactured the prototype. Using the prototype, we measured the IOP change before and after cleaving the TM. Finally, we demonstrated the availability by comparing experimental results and target performances. This simulator is also expected to be used for evaluations and developments of new MIGS instruments and ophthalmic surgery robots in addition to the surgical training of ophthalmologists.


Assuntos
Glaucoma , Próteses Visuais , Glaucoma/cirurgia , Humanos , Pressão Intraocular , Microfluídica , Malha Trabecular/fisiologia
2.
J Biosci Bioeng ; 127(1): 45-51, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30082219

RESUMO

In the natural gas field located in central Japan, high concentrations of natural gases and iodide ions are dissolved in formation water and commercially produced in deep aquifers. In the iodine recovery process, the produced formation water is amended with sulfate, and this fluid is injected into gas-bearing aquifers, which may lead to infrastructure corrosion by hydrogen sulfide. In this study, we examined the microbial community in aquifers subjected to sulfate-containing fluid injection. Formation water samples were collected from production wells located at different distances from the injection wells. The chemical analysis showed that the injection fluid contained oxygen, nitrate, nitrite and sulfate, in contrast to the formation water, which had previously been shown to be depleted in these components. Sulfur isotopic analysis indicated that sulfate derived from the injection fluid was present in the sample collected from near the injection wells. Quantitative and sequencing analysis of dissimilatory sulfite reductase and 16S rRNA genes revealed that sulfate-reducing bacteria (SRB), sulfur-oxidizing bacteria, and anaerobic methanotrophic archaea (ANME) in the wells located near injection wells were more abundant than those in wells located far from the injection wells, suggesting that fluid injection stimulated these microorganisms through the addition of oxygen, nitrate, nitrite and sulfate to the methane-rich aquifers. The predominant taxa were assigned to the ANME-2 group, its sulfate-reducing partner SEEP-SRB1 cluster and sulfur-oxidizing Epsilonproteobacteria. These results provide important insights for future studies to support the development of natural gas and iodine resources in Japan.


Assuntos
Água Subterrânea/microbiologia , Fraturamento Hidráulico , Microbiota , Gás Natural/microbiologia , Campos de Petróleo e Gás/microbiologia , Sulfatos/química , Archaea/genética , Archaea/isolamento & purificação , Epsilonproteobacteria/genética , Epsilonproteobacteria/isolamento & purificação , Sedimentos Geológicos/microbiologia , Fraturamento Hidráulico/métodos , Japão , Metano/química , Microbiota/genética , Nitratos/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Enxofre/metabolismo , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/isolamento & purificação
3.
Appl Environ Microbiol ; 82(19): 5741-55, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27422841

RESUMO

UNLABELLED: It has been suggested that iron is one of the most important energy sources for photosynthesis-independent microbial ecosystems in the ocean crust. Iron-metabolizing chemolithoautotrophs play a key role as primary producers, but little is known about their distribution and diversity and their ecological role as submarine iron-metabolizing chemolithotrophs, particularly the iron oxidizers. In this study, we investigated the microbial communities in several iron-dominated flocculent mats found in deep-sea hydrothermal fields in the Mariana Volcanic Arc and Trough and the Okinawa Trough by culture-independent molecular techniques and X-ray mineralogical analyses. The abundance and composition of the 16S rRNA gene phylotypes demonstrated the ubiquity of zetaproteobacterial phylotypes in iron-dominated mat communities affected by hydrothermal fluid input. Electron microscopy with energy-dispersive X-ray microanalysis and X-ray absorption fine structure (XAFS) analysis revealed the chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species and the potential contribution of Zetaproteobacteria to the in situ generation. These results suggest that putative iron-oxidizing chemolithoautotrophs play a significant ecological role in producing iron-dominated flocculent mats and that they are important for iron and carbon cycles in deep-sea low-temperature hydrothermal environments. IMPORTANCE: We report novel aspects of microbiology from iron-dominated flocculent mats in various deep-sea environments. In this study, we examined the relationship between Zetaproteobacteria and iron oxides across several hydrothermally influenced sites in the deep sea. We analyzed iron-dominated mats using culture-independent molecular techniques and X-ray mineralogical analyses. The scanning electron microscopy-energy-dispersive X-ray spectroscopy SEM-EDS analysis and X-ray absorption fine structure (XAFS) analysis revealed chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species as well as the potential contribution of the zetaproteobacterial population to the in situ production. These key findings provide important information for understanding the mechanisms of both geomicrobiological iron cycling and the formation of iron-dominated mats in deep-sea hydrothermal fields.


Assuntos
Compostos Férricos/metabolismo , Fontes Hidrotermais/microbiologia , Ferro/metabolismo , Proteobactérias/classificação , Microbiota , Oxirredução , Oceano Pacífico , Proteobactérias/genética , Proteobactérias/metabolismo , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de RNA , Espectroscopia por Absorção de Raios X
4.
Anal Sci ; 29(1): 9-13, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23303077

RESUMO

We developed a system for measuring the total dissolved inorganic carbon (DIC) concentrations in interstitial water and hydrothermal fluid, which are hard to obtain in large volumes. The system requires a sample volume of only 500 µL, and it takes only 150 s per one sample. The detection limit of this system was estimated to be 66.6 µmol/kg with repeated analysis of CO(2)-free ultrapure water (n = 9). The precision of this nondispersive infrared (NDIR) system was ±3.1% of the relative standard deviations (2σ) by repeated CRM batch 104 (n = 10). This result is much larger than the required precision for oceanographic studies, but is comparable to a previous result of interstitial water analysis. An on-site trial showed a significant DIC enrichment in interstitial water of hydrothermally altered sediment, and is considered to occur by the mixing of hydrothermal fluid. This procedure will achieve carbon dioxide flux calculations from hydrothermal activities, and will bring a more accurate feature on the global carbon cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA