Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963658

RESUMO

Our recent study revealed that SLC49A4, known as disrupted in renal carcinoma 2, is a H+-coupled lysosomal exporter for pyridoxine (vitamin B6), a cationic compound, and involved in the regulation of its lysosomal and cellular levels. We here examined a possibility that this transporter might also transport cationic amphiphilic drugs (CADs) that are known to undergo lysosomal trapping, using pyrilamine, an H1-antagonist, as a model CAD and the COS-7 cell line as a model cell system for transient introduction of human SLC49A4 and a recombinant SLC49A4 protein (SLC49A4-AA), in which the N-terminal dileucine motif involved in lysosomal localization was removed by replacing with dialanine for redirected localization to the plasma membrane. The introduction of SLC49A4 into COS-7 cells induced a significant decrease in the accumulation of pyrilamine in the intracellular compartments in the cells treated with digitonin for permeabilization of plasma membranes, suggesting its operation for lysosomal pyrilamine export. Accordingly, functional analysis using the SLC49A4-AA mutant, which operates for cellular uptake at the plasma membrane, in transiently transfected COS-7 cells demonstrated its H+-coupled operation for pyrilamine transport, which was saturable with a Michaelis constant of 132 µM at pH 5.5. In addition, many CADs that may potentially undergo lysosomal trapping, which include imipramine, propranolol, verapamil, and some others, were found to inhibit SLC49A4-AA-mediated pyrilamine transport, suggesting their affinity for SLC49A4. These results suggest that SLC49A4 is involved in the lysosomal trapping of pyrilamine, operating for its exit. The CADs that inhibited SLC49A4-AA-mediated pyrilamine transport could also be SLC49A4 substrate candidates. Significance Statement SLC49A4 mediates the transport of pyrilamine in a H+-coupled manner at the lysosomal membrane. This could be a newly identified mechanism for lysosomal export involved in its lysosomal trapping.

2.
Life Sci Alliance ; 6(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36456177

RESUMO

Disrupted in renal carcinoma 2 (DIRC2) has gained interest because of its association with the development of renal cancer and cosegregation with a chromosomal translocation. It is a member of the SLC49 family (SLC49A4) and is considered to be an electrogenic lysosomal metabolite transporter; however, its molecular function has not been fully defined. To perform a detailed functional analysis of human DIRC2, we used a recombinant DIRC2 protein (DIRC2-AA), in which the N-terminal dileucine motif involved in its lysosomal localization was removed by replacing with dialanine for redirected localization to the plasma membrane, exposing intralysosomal segments to the extracellular space. The DIRC2-AA mutant induced the cellular uptake of pyridoxine (vitamin B6) under acidic conditions when expressed transiently in COS-7 cells. In addition, uptake was markedly inhibited by protonophores, indicating its function through an H+-coupled mechanism. In separate experiments, the transient overexpression of unmodified DIRC2 (tagged with HA) in human embryonic kidney 293 cells reduced cellular pyridoxine accumulation induced by transiently introduced human thiamine transporter 2/SLC19A3 (tagged with FLAG), a plasma membrane thiamine transporter that also transports pyridoxine. The cellular accumulation of pyridoxine in Caco-2 cells as a cell model was increased by the knockdown of endogenous DIRC2. Overall, the results indicate that DIRC2 is an H+-driven lysosomal pyridoxine exporter. Its overexpression leads to a reduction in cellular pyridoxine accumulation associated with reduced lysosomal accumulation and, conversely, its suppression results in an increase in lysosomal and cellular pyridoxine accumulation.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteínas de Membrana Transportadoras , Humanos , Células CACO-2 , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Lisossomos , Proteínas de Membrana Transportadoras/genética , Piridoxina , Tiamina
3.
J Biol Chem ; 298(8): 102161, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35724964

RESUMO

Recent studies have shown that human solute carrier SLC19A3 (hSLC19A3) can transport pyridoxine (vitamin B6) in addition to thiamine (vitamin B1), its originally identified substrate, whereas rat and mouse orthologs of hSLC19A3 can transport thiamine but not pyridoxine. This finding implies that some amino acid residues required for pyridoxine transport, but not for thiamine transport, are specific to hSLC19A3. Here, we sought to identify these residues to help clarify the unique operational mechanism of SLC19A3 through analyses comparing hSLC19A3 and mouse Slc19a3 (mSlc19a3). For our analyses, hSLC19A3 mutants were prepared by replacing selected amino acid residues with their counterparts in mSlc19a3, and mSlc19a3 mutants were prepared by substituting selected residues with their hSLC19A3 counterparts. We assessed pyridoxine and thiamine transport by these mutants in transiently transfected human embryonic kidney 293 cells. Our analyses indicated that the hSLC19A3-specific amino acid residues of Gln86, Gly87, Ile91, Thr93, Trp94, Ser168, and Asn173 are critical for pyridoxine transport. These seven amino acid residues were found to be mostly conserved in the SLC19A3 orthologs that can transport pyridoxine but not in orthologs that are unable to transport pyridoxine. In addition, these residues were also found to be conserved in several SLC19A2 orthologs, including rat, mouse, and human orthologs, which were all found to effectively transport both pyridoxine and thiamine, exhibiting no species-dependent differences. Together, these findings provide a molecular basis for the unique functional characteristics of SLC19A3 and also of SLC19A2.


Assuntos
Aminoácidos , Proteínas de Membrana Transportadoras/metabolismo , Aminoácidos/metabolismo , Animais , Transporte Biológico , Células Epiteliais/metabolismo , Humanos , Camundongos , Ratos , Tiamina/genética , Tiamina/metabolismo
4.
Drug Metab Pharmacokinet ; 43: 100443, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35144162

RESUMO

Orotate, a nutritional compound typically utilized as an intermediate in pyrimidine synthesis, has been suggested to undergo renal reabsorption. However, the detailed mechanisms involved in the process remain unclear, with only urate transporter 1 (URAT1/SLC22A12) being indicated as a transporter involved in its tubular uptake. As an attempt to identify transporters involved in that to help clarify the mechanisms, we examined a possibility that organic anion transporter 10 (OAT10/SLC22A13), which is present at the brush border membrane in renal tubular epithelial cells, could transport orotate. The operation of human OAT10 for orotate transport was demonstrated indeed and analyzed in detail in Madin-Darby canine kidney II cells introduced with this transporter by stable transfection. Orotate transport by OAT10 was found to be kinetically saturable with a biphasic characteristic and dependent on Cl-. These are unique characteristics previously unknown in its operation for the other substrates. Orotate transport by OAT10 was, on the other hand, inhibited by several anionic compounds known as OAT10 inhibitors. Finally, the rat ortholog of OAT10 was found not to be able to transport orotate, indicating animal species differences in that function. Thus, human OAT10 has been demonstrated to operate for orotate transport with unique characteristics.


Assuntos
Transportadores de Ânions Orgânicos , Animais , Transporte Biológico , Cães , Humanos , Rim/metabolismo , Células Madin Darby de Rim Canino , Microvilosidades/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Ratos
5.
J Biol Chem ; 295(50): 16998-17008, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33008889

RESUMO

SLC19A2 and SLC19A3, also known as thiamine transporters (THTR) 1 and 2, respectively, transport the positively charged thiamine (vitamin B1) into cells to enable its efficient utilization. SLC19A2 and SLC19A3 are also known to transport structurally unrelated cationic drugs, such as metformin, but whether this charge selectivity extends to other molecules, such as pyridoxine (vitamin B6), is unknown. We tested this possibility using Madin-Darby canine kidney II (MDCKII) cells and human embryonic kidney 293 (HEK293) cells for transfection experiments, and also using Caco-2 cells as human intestinal epithelial model cells. The stable expression of SLC19A2 and SLC19A3 in MDCKII cells (as well as their transient expression in HEK293 cells) led to a significant induction in pyridoxine uptake at pH 5.5 compared with control cells. The induced uptake was pH-dependent, favoring acidic conditions over neutral to basic conditions, and protonophore-sensitive. It was saturable as a function of pyridoxine concentration, with an apparent Km of 37.8 and 18.5 µm, for SLC19A2 and SLC19A3, respectively, and inhibited by the pyridoxine analogs pyridoxal and pyridoxamine as well as thiamine. We also found that silencing the endogenous SLC19A3, but not SLC19A2, of Caco-2 cells with gene-specific siRNAs lead to a significant reduction in carrier-mediated pyridoxine uptake. These results show that SLC19A2 and SLC19A3 are capable of recognizing/transporting pyridoxine, favoring acidic conditions for operation, and suggest a possible role for these transporters in pyridoxine transport mainly in tissues with an acidic environment like the small intestine, which has an acidic surface microclimate.


Assuntos
Ácidos/metabolismo , Células Epiteliais/metabolismo , Intestino Delgado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Microclima , Animais , Transporte Biológico , Cães , Humanos , Concentração de Íons de Hidrogênio , Células Madin Darby de Rim Canino , Tiamina/metabolismo
6.
J Pharm Sci ; 109(8): 2622-2628, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32339528

RESUMO

Equilibrative nucleobase transporter 1 (ENBT1/SLC43A3) has recently been identified as a purine-selective nucleobase transporter. Although it is highly expressed in the liver, its role in nucleobase transport has not been confirmed yet in hepatocytes or any relevant cell models. We, therefore, examined its role in adenine transport in the HepG2 cell line as a human hepatocyte model. The uptake of [3H]adenine in HepG2 cells was highly saturable, indicating the involvement of carrier-mediated transport. The carrier-mediated transport component, for which the Michaelis constant was estimated to be 0.268 µM, was sensitive to decynium-22, an ENBT1 inhibitor, with the half maximal inhibitory concentration of 2.59 µM, which was comparable to that of 2.30 µM for [3H]adenine uptake by ENBT1 in its transient transfectant human embryonic kidney 293 cells. Although equilibrative nucleoside transporter 1 (ENT1/SLC29A1) and ENT2/SLC29A2 are also known to be able to transport adenine, [3H]adenine uptake in HepG2 cells was not inhibited by the ENT1/2-specific inhibitor of either dipyridamole or nitrobenzylthioinosine. Finally, [3H]adenine uptake was extensively reduced by silencing of ENBT1 by RNA interference in the hepatocyte model. All these results, taken together, suggest the predominant role of ENBT1 in the uptake of adenine in HepG2 cells.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo , Transportador Equilibrativo 2 de Nucleosídeo , Adenina , Sistemas de Transporte de Aminoácidos/metabolismo , Transporte Biológico , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo/genética , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Células Hep G2 , Humanos
7.
Artigo em Inglês | MEDLINE | ID: mdl-19451007

RESUMO

OBJECTIVE: A tooth with a dentigerous cyst (DC) does not always erupt by marsupialization. The eruption duration and conditions of DC-associated premolars were examined to predict such eruption following marsupialization. STUDY DESIGN: The eruption and conditions including depth, root formation, inclination, and eruption space were examined retrospectively in 21 DC-associated mandibular premolars using dental and panoramic radiograms. RESULTS: Fifteen of 21 premolars erupted half within 3 months and all 15 erupted completely within 10 months after marsupialization, without orthodontic traction. The age of the patients, tooth depth, and inclination were significantly different between the erupted and non-erupted groups, whereas there was no significant difference in the root formation or the eruption space between the 2 groups. CONCLUSIONS: The successful eruption of a DC-associated premolar can be predicted within 3 months after marsupialization. Furthermore, the eruption may be affected by the patient's age, tooth depth, and tooth inclination.


Assuntos
Dente Pré-Molar/fisiopatologia , Cisto Dentígero/cirurgia , Doenças Mandibulares/cirurgia , Erupção Dentária/fisiologia , Adolescente , Fatores Etários , Dente Pré-Molar/diagnóstico por imagem , Criança , Cisto Dentígero/fisiopatologia , Feminino , Seguimentos , Previsões , Humanos , Masculino , Doenças Mandibulares/fisiopatologia , Odontogênese/fisiologia , Radiografia Panorâmica , Estudos Retrospectivos , Ápice Dentário/diagnóstico por imagem , Colo do Dente/diagnóstico por imagem , Coroa do Dente/diagnóstico por imagem , Raiz Dentária/diagnóstico por imagem , Raiz Dentária/fisiopatologia , Dente Impactado/diagnóstico por imagem , Dente Impactado/fisiopatologia , Dente Impactado/cirurgia , Dente não Erupcionado/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA