Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Antimicrob Agents Chemother ; 66(6): e0207321, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35604213

RESUMO

Novel neplanocin A derivatives have been identified as potent and selective inhibitors of hepatitis B virus (HBV) replication in vitro. These include (1S,2R,5R)-5-(5-bromo-4-methyl-7H-pyrrolo[2,3-d]-pyrimidin-7-yl)-3-(hydroxymethyl)cyclopent-3-ene-1,2-diol (AR-II-04-26) and (1S,2R,5R)-5-(4-amino-3-iodo-1H-pyrazolo[3,4-d]pyrimidin-1-yl)-3-(hydroxylmethyl)cyclopent-3-ene-1,2-diol (MK-III-02-03). The 50% effective concentrations of AR-II-04-26 and MK-III-02-03 were 0.77 ± 0.23 and 0.83 ± 0.36 µM in HepG2.2.15.7 cells, respectively. These compounds reduced intracellular HBV RNA levels in HepG2.2.15.7 cells and infected primary human hepatocytes. Accordingly, they could reduce HBs and HBe antigen production in the culture supernatants, which was not observed with clinically approved anti-HBV nucleosides and nucleotides (reverse transcriptase inhibitors). The neplanocin A derivatives also inhibited HBV RNA derived from cccDNA. In addition, unlike neplanocin A itself, the compounds did not inhibit S-adenosyl-l-homocysteine hydrolase activity. Thus, it appears that the mechanism of action of AR-II-04-26 and MK-III-02-03 differs from that of the clinically approved anti-HBV agents. Although their exact mechanism (target molecule) remains to be elucidated, the novel neplanocin A derivatives are considered promising candidate drugs for inhibition of HBV replication.


Assuntos
Vírus da Hepatite B , Hepatite B , Adenosina/análogos & derivados , Antivirais/farmacologia , DNA Viral , Hepatite B/tratamento farmacológico , Humanos , RNA , Replicação Viral
2.
Antiviral Res ; 194: 105165, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34419484

RESUMO

The development of novel antivirals to treat hepatitis B virus (HBV) infection is still needed because currently available drugs do not completely eradicate chronic HBV in some patients. Recently, troglitazone and ciglitazone, classified among the compounds including the thiazolidinedione (TZD) moiety, were found to inhibit HBV infection, but these compounds are not clinically available. In this study, we synthesized 11 TZD derivatives, compounds 1-11, and examined the effect of each compound on HBV infection in HepG2 cells expressing NTCP (HepG2/NTCP cells). Among the derivatives, (Z)-5-((4'-(naphthalen-1-yl)-[1,1'-biphenyl]-4-yl)methylene)thiazolidine-2,4-dione (compound 6) showed the highest antiviral activity, with an IC50 value of 0.3 µM and a selectivity index (SI) of 85, but compound 6 did not affect HCV infection. Treatment with compound 6 inhibited HBV infection in primary human hepatocytes (PHHs) but did not inhibit viral replication in HepG2.2.15 cells or HBV DNA-transfected Huh7 cells. Moreover, treatment with compound 6 significantly impaired hepatitis delta virus (HDV) infection and inhibited a step in HBV particle internalization but did not inhibit attachment of the preS1 lipopeptide or viral particles to the cell surface. These findings suggest that compound 6 interferes with HBV infection via inhibition of the internalization process.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/síntese química , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Concentração Inibidora 50 , Tiazolidinedionas/síntese química
3.
Hepatol Commun ; 5(4): 634-649, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33860122

RESUMO

Compared with each monoinfection, coinfection with hepatitis B virus (HBV) and hepatitis C virus (HCV) is well known to increase the risks of developing liver cirrhosis and hepatocellular carcinoma. However, the mechanism by which HBV/HCV coinfection is established in hepatocytes is not well understood. Common cell culture models for coinfection are required to examine viral propagation. In this study, we aimed to establish a cell line permissive for both HBV and HCV infection. We first prepared a HepG2 cell line expressing sodium taurocholate cotransporting polypeptide, an HBV receptor, and then selected a cell line highly permissive for HBV infection, G2/NT18-B. After transduction with a lentivirus-encoding microRNA-122, the cell line harboring the highest level of replicon RNA was selected and then treated with anti-HCV compounds to eliminate the replicon RNA. The resulting cured cell line was transduced with a plasmid-encoding CD81. The cell line permissive for HCV infection was cloned and then designated the G2BC-C2 cell line, which exhibited permissiveness for HBV and HCV propagation. JAK inhibitor I potentiated the HCV superinfection of HBV-infected cells, and fluorescence-activated cell-sorting analysis indicated that HBV/HCV double-positive cells accounted for approximately 30% of the coinfected cells. Among several host genes tested, cyclooxygenase-2 showed synergistic induction by coinfection compared with each monoinfection. Conclusion: These data indicate that our in vitro HBV/HCV coinfection system provides an easy-to-use platform for the study of host and viral responses against coinfection and the development of antiviral agents targeting HBV and HCV.


Assuntos
Linhagem Celular , Hepacivirus/fisiologia , Vírus da Hepatite B/fisiologia , Hepatite B/virologia , Hepatite C/virologia , Coinfecção , Dimetil Sulfóxido/farmacologia , Células Hep G2 , Humanos , Inibidores de Janus Quinases/farmacologia , MicroRNAs , Tetraspanina 28/administração & dosagem , Replicação Viral/efeitos dos fármacos
4.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33328315

RESUMO

Hepatitis C virus (HCV) infection causes liver pathologies, including hepatocellular carcinoma (HCC). Homeobox (HOX) gene products regulate embryonic development and are associated with tumorigenesis, although the regulation of HOX genes by HCV infection has not been clarified in detail. We examined the effect of HCV infection on HOX gene expression. In this study, HCV infection induced more than half of the HOX genes and reduced the level of histone H2A monoubiquitination on lysine 119 (K119) (H2Aub), which represses HOX gene promoter activity. HCV infection also promoted proteasome-dependent degradation of RNF2, which is an E3 ligase mediating H2A monoubiquitination as a component of polycomb repressive complex 1. Since full-genomic replicon cells but not subgenomic replicon cells exhibited reduced RNF2 and H2Aub levels and induction of HOX genes, we focused on the core protein. Expression of the core protein reduced the amounts of RNF2 and H2Aub and induced HOX genes. Treatment with LY-411575, which can reduce HCV core protein expression via signal peptide peptidase (SPP) inhibition without affecting other viral proteins, dose-dependently restored the amounts of RNF2 and H2Aub in HCV-infected cells and impaired the induction of HOX genes and production of viral particles but not viral replication. The chromatin immunoprecipitation assay results also indicated infection- and proteasome-dependent reductions in H2Aub located in HOX gene promoters. These results suggest that HCV infection or core protein induces HOX genes by impairing histone H2A monoubiquitination via a reduction in the RNF2 level.IMPORTANCE Recently sustained virologic response can be achieved by direct-acting antiviral (DAA) therapy in most hepatitis C patients. Unfortunately, DAA therapy does not completely eliminate a risk of hepatocellular carcinoma (HCC). Several epigenetic factors, including histone modifications, are well known to contribute to hepatitis C virus (HCV)-associated HCC. However, the regulation of histone modifications by HCV infection has not been clarified in detail. In this study, our data suggest that HCV infection or HCV core protein expression impairs monoubiquitination of histone H2A K119 in the homeobox (HOX) gene promoter via destabilization of RNF2 and then induces HOX genes. Several lines of evidence suggest that the expression of several HOX genes is dysregulated in certain types of tumors. These findings reveal a novel mechanism of HCV-related histone modification and may provide information about new targets for diagnosis and prevention of HCC occurrence.


Assuntos
Genes Homeobox/genética , Hepacivirus/fisiologia , Histonas/metabolismo , Ubiquitinação/fisiologia , Linhagem Celular , Regulação da Expressão Gênica , Hepacivirus/metabolismo , Hepatite C/genética , Hepatite C/metabolismo , Hepatite C/virologia , Código das Histonas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas do Core Viral/metabolismo
5.
Hepatol Res ; 50(9): 1071-1082, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32510681

RESUMO

AIM: The landscape of cancer-related genetic aberrations in hepatocellular carcinoma (HCC) has gradually become clear through recent next-generation sequencing studies. However, it remains unclear how genetic aberrations correlate with imaging and histological findings. METHODS: Using 117 formalin-fixed paraffin-embedded specimens of primary liver tumors, we undertook targeted next-generation sequencing of 50 cancer-related genes and digital polymerase chain reaction of hTERT. After classifying tumors into several imaging groups by hierarchal clustering with the information from gadoxetic acid enhanced magnetic resonance imaging, contrast-enhanced computed tomography, contrast-enhanced ultrasound, and diffusion-weighted imaging magnetic resonance imaging, the correlation between genetic aberrations and imaging and histology were investigated. RESULTS: Most frequent mutations were hTERT (61.5%), followed by TP53 (42.7%), RB1 (24.8%), and CTNNB1 (18.8%). Liver tumors were classified into six imaging groups/grades, and the prevalence of hTERT mutations tended to increase with the advancement of imaging/histological grades (P = 0.026 and 0.13, respectively), whereas no such tendency was evident for TP53 mutation (P = 0.78 and 1.00, respectively). Focusing on the mutations in each tumor, although the variant frequency (VF) of hTERT did not change (P = 0.36 and 0.14, respectively) in association with imaging/histological grades, TP53 VF increased significantly (P = 0.004 and <0.001, respectively). In multivariate analysis, stage III or IV (hazard ratio, 3.64; P = 0.003), TP53 VF ≥ 50% (hazard ratio, 3.79; P = 0.020) was extracted as an independent risk for recurrence in primary HCC patients. CONCLUSIONS: Increased prevalence of hTERT mutation and increased TP53 mutation VF are characteristic features of HCC progression, diagnosed with imaging/histological studies.

6.
Hepatol Res ; 49(1): 51-63, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30350374

RESUMO

AIM: Although the viral markers hepatitis B surface antigen (HBsAg) and hepatitis B core-related antigen (HbcrAg) could reflect intrahepatic hepatitis B virus (HBV) replication activity and constitute important biomarkers for hepatocellular carcinoma (HCC), the value of using these two markers in combination for assessing HCC risk has not been clarified in detail. METHODS: Four hundred and forty-nine consecutive patients with chronic HBV infection were included in the study and the association of HBsAg and HBcrAg with HCC risk was investigated cross-sectionally, as well as longitudinally. RESULTS: When the high value cut-offs of HBsAg and HBcrAg were defined as 3.0 log IU/mL and 3.0 log U/mL, respectively, patients with a history of HCC were found frequently in the low HBsAg group (P = 0.002) and high HBcrAg group (P < 0.001). When HBsAg and HBcrAg were combined, an HCC history was most frequent in the subset with low HBsAg and high HBcrAg, among the HBeAg-negative patients (odds ratio [OR], 7.83; P < 0.001), irrespective of nucleos(t) ide analogue (NA) therapy (NA: OR, 4.76; P < 0.001; non-NA: OR, 9.60; P < 0.001). In a longitudinal analysis of the subsequent development of HCC, carried out on the 338 patients without an HCC history at enrollment, HCC developed significantly more frequently in the low HBsAg/high HBcrAg group (P = 0.005). CONCLUSIONS: Patients with low HBsAg/high HBcrAg values are at high risk of developing HBV-related HCC, according to this cross-sectional and longitudinal analysis, indicating that the combination of HBsAg and HBcrAg values is an excellent biomarker for assessing HCC risk.

7.
Antiviral Res ; 145: 123-130, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28780423

RESUMO

Several cinnamic acid derivatives have been reported to exhibit antiviral activity. In this study, we prepared 17 synthetic cinnamic acid derivatives and screened them to identify an effective antiviral compound against hepatitis C virus (HCV). Compound 6, one of two hit compounds, suppressed the viral replications of genotypes 1b, 2a, 3a, and 4a with EC50 values of 1.5-8.1 µM and SI values of 16.2-94.2. The effect of compound 6 on the phosphorylation of Tyr705 in signal transducer and activator of transcription 3 (STAT3) was investigated because a cinnamic acid derivative AG490 was reported to suppress HCV replication and the activity of Janus kinase (JAK) 2. Compound 6 potently suppressed HCV replication, but it did not inhibit the JAK1/2-dependent phosphorylation of STAT3 Tyr705 at the same concentration. Furthermore, a pan-JAK inhibitor tofacitinib potently impaired phosphorylation of STAT3 Tyr 705, but it did not inhibit HCV replication in the replicon cells and HCV-infected cells at the same concentration, supporting the notion that the phosphorylated state of STAT3 Tyr705 is not necessarily correlated with HCV replication. The production of reactive oxygen species (ROS) was induced by treatment with compound 6, whereas N-acetyl-cysteine restored HCV replication and impaired ROS production in the replicon cells treated with compound 6. These data suggest that compound 6 inhibits HCV replication via the induction of oxidative stress.


Assuntos
Antivirais/farmacologia , Cinamatos/farmacologia , Hepacivirus/efeitos dos fármacos , Estresse Oxidativo , Replicação Viral/efeitos dos fármacos , Antivirais/síntese química , Linhagem Celular , Cinamatos/síntese química , Cinamatos/química , Replicação do DNA/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatite C/virologia , Ensaios de Triagem em Larga Escala , Humanos , RNA Viral , Espécies Reativas de Oxigênio/metabolismo , Replicon/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo
8.
Antiviral Res ; 145: 136-145, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28827084

RESUMO

The currently available antiviral agents for chronic infection with hepatitis B virus (HBV) are pegylated interferon-α and nucleoside/nucleotide analogues, although it has been difficult to completely eliminate covalently closed circular DNA (cccDNA) from patients. To identify an antiviral compound targeting HBV core promoter, 15 terpenes originating from marine organisms were screened using a cell line expressing firefly luciferase under the control of the HBV core promoter. Metachromin A, which is a merosesquiterpene isolated from the marine sponge Dactylospongia metachromia, inhibited the viral promoter activity at the highest level among the tested compounds, and suppressed HBV production with an EC50 value of 0.8 µM regardless of interferon signaling and cytotoxicity. The analysis on the structure-activity relationship revealed that the hydroquinone moiety, and the double bonds at carbon numbers-5 and -9 in metachromin A are crucial for anti-HBV activity. Furthermore, metachromin A reduced the protein level but not the RNA level of hepatic nuclear factor 4α, which mainly upregulates the activities of enhancer I/X promoter and enhancer II/core promoter. These results suggest that metachromin A can inhibit HBV production via impairment of the viral promoter activity. Antiviral agents targeting the viral promoter may ameliorate HBV-related disorders regardless of remaining cccDNA.


Assuntos
Antivirais/química , Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Sesquiterpenos/farmacologia , Antivirais/isolamento & purificação , Linhagem Celular , Replicação do DNA/efeitos dos fármacos , DNA Viral/efeitos dos fármacos , Descoberta de Drogas , Células Hep G2 , Hepatite B/tratamento farmacológico , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Sesquiterpenos/administração & dosagem , Relação Estrutura-Atividade , Terpenos/química , Terpenos/isolamento & purificação , Terpenos/farmacologia , Replicação Viral/efeitos dos fármacos
9.
J Gen Virol ; 98(7): 1762-1773, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28745269

RESUMO

The relationship between hepatitis B virus (HBV) infection and lipid accumulation remains largely unknown. In this study, we investigated the effect of HBV propagation on lipid droplet growth in HBV-infected cells and HBV-producing cell lines, HepG2.2.15 and HBV-inducible Hep38.7-Tet. The amount of intracellular triglycerides was significantly reduced in HBV-infected and HBV-producing cells compared with HBV-lacking control cells. Electron and immunofluorescent microscopic analyses showed that the average size of a single lipid droplet (LD) was significantly less in the HBV-infected and HBV-producing cells than in the HBV-lacking control cells. Cell death-inducing DFF45-like effectors (CIDEs) B and C (CIDEB and CIDEC), which are involved in LD expansion for the improvement of lipid storage, were expressed at a significantly lower level in HBV-infected or HBV-producing cells than in HBV-lacking control cells, while CIDEA was not detected in those cells regardless of HBV production. The activity of the CIDEB and CIDEC gene promoters was impaired in HBV-infected or HBV-producing cells compared to HBV-lacking control cells, while CIDEs potentiated HBV core promoter activity. The amount of HNF4α, that can promote the transcription of CIDEB was significantly lower in HBV-producing cells than in HBV-lacking control cells. Knockout of CIDEB or CIDEC significantly reduced the amount of supernatant HBV DNA, intracellular viral RNA and nucleocapsid-associated viral DNA, while the expression of CIDEB or CIDEC recovered HBV production in CIDEB- or CIDEC-knockout cells. These results suggest that HBV regulates its own viral replication via CIDEB and CIDEC.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/metabolismo , Vírus da Hepatite B/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas/metabolismo , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Células Hep G2 , Vírus da Hepatite B/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Metabolismo dos Lipídeos , Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Triglicerídeos/metabolismo , Replicação Viral/fisiologia
10.
Microbiol Immunol ; 60(11): 740-753, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27797115

RESUMO

Hepatitis C virus (HCV) core protein is responsible for the formation of infectious viral particles and induction of pathogenicity. The C-terminal transmembrane region of the immature core protein is cleaved by signal peptide peptidase (SPP) for maturation of the core protein. SPP belongs to the family of presenilin-like aspartic proteases. Some presenilin inhibitors are expected to suppress HCV infection and production; however, this anti-HCV effect has not been investigated in detail. In this study, presenilin inhibitors were screened to identify anti-HCV compounds. Of the 13 presenilin inhibitors tested, LY411575 was the most potent inhibitor of SPP-dependent cleavage of HCV core protein. Production of intracellular core protein and supernatant infectious viral particles from HCV-infected cells was significantly impaired by LY411575 in a dose-dependent manner (half maximum inhibitory concentration = 0.27 µM, cytotoxic concentration of the extracts to cause death to 50% of viable cells > 10 µM). No effect of LY411575 on intracellular HCV RNA in the subgenomic replicon cells was detected. LY411575 synergistically promoted daclatasvir-dependent inhibition of viral production, but not that of viral replication. Furthermore, LY411575 inhibited HCV-related production of reactive oxygen species and expression of NADPH oxidases and vascular endothelial growth factor. Taken together, our data suggest that LY411575 suppresses HCV propagation through SPP inhibition and impairs host gene expressions related to HCV pathogenicity.


Assuntos
Alanina/análogos & derivados , Azepinas/farmacologia , Regulação da Expressão Gênica , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatite C/genética , Hepatite C/virologia , Proteínas do Core Viral/metabolismo , Replicação Viral/efeitos dos fármacos , Alanina/farmacologia , Antivirais/farmacologia , Carbamatos , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Sinergismo Farmacológico , Hepatite C/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imidazóis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Presenilinas/antagonistas & inibidores , Presenilinas/metabolismo , Proteólise , Pirrolidinas , Espécies Reativas de Oxigênio/metabolismo , Valina/análogos & derivados , Proteínas do Core Viral/genética
11.
J Virol ; 90(7): 3530-42, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26792738

RESUMO

UNLABELLED: Hepatitis B virus (HBV) is a causative agent for chronic liver diseases such as hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HBx protein encoded by the HBV genome plays crucial roles not only in pathogenesis but also in replication of HBV. Although HBx has been shown to bind to a number of host proteins, the molecular mechanisms by which HBx regulates HBV replication are largely unknown. In this study, we identified jumonji C-domain-containing 5 (JMJD5) as a novel binding partner of HBx interacting in the cytoplasm. DNA microarray analysis revealed that JMJD5-knockout (JMJD5KO) Huh7 cells exhibited a significant reduction in the expression of transcriptional factors involved in hepatocyte differentiation, such as HNF4A, CEBPA, and FOXA3. We found that hydroxylase activity of JMJD5 participates in the regulation of these transcriptional factors. Moreover, JMJD5KO Huh7 cells exhibited a severe reduction in HBV replication, and complementation of HBx expression failed to rescue replication of a mutant HBV deficient in HBx, suggesting that JMJD5 participates in HBV replication through an interaction with HBx. We also found that replacing Gly(135) with Glu in JMJD5 abrogates binding with HBx and replication of HBV. Moreover, the hydroxylase activity of JMJD5 was crucial for HBV replication. Collectively, these results suggest that direct interaction of JMJD5 with HBx facilitates HBV replication through the hydroxylase activity of JMJD5. IMPORTANCE: HBx protein encoded by hepatitis B virus (HBV) plays important roles in pathogenesis and replication of HBV. We identified jumonji C-domain-containing 5 (JMJD5) as a novel binding partner to HBx. JMJD5 was shown to regulate several transcriptional factors to maintain hepatocyte function. Although HBx had been shown to support HBV replication, deficiency of JMJD5 abolished contribution of HBx in HBV replication, suggesting that HBx-mediated HBV replication is largely dependent on JMJD5. We showed that hydroxylase activity of JMJD5 in the C terminus region is crucial for expression of HNF4A and replication of HBV. Furthermore, a mutant JMJD5 with Gly(135) replaced by Glu failed to interact with HBx and to rescue the replication of HBV in JMJD5-knockout cells. Taken together, our data suggest that interaction of JMJD5 with HBx facilitates HBV replication through the hydroxylase activity of JMJD5.


Assuntos
Vírus da Hepatite B/fisiologia , Hepatócitos/virologia , Histona Desmetilases/metabolismo , Interações Hospedeiro-Patógeno , Transativadores/metabolismo , Replicação Viral , Substituição de Aminoácidos , Linhagem Celular , Técnicas de Inativação de Genes , Histona Desmetilases/genética , Humanos , Mutagênese Sítio-Dirigida , Mapeamento de Interação de Proteínas , Proteínas Virais Reguladoras e Acessórias
12.
Sci Rep ; 5: 16699, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26567527

RESUMO

The chaperone system is known to be exploited by viruses for their replication. In the present study, we identified the cochaperone FKBP6 as a host factor required for hepatitis C virus (HCV) replication. FKBP6 is a peptidyl prolyl cis-trans isomerase with three domains of the tetratricopeptide repeat (TPR), but lacks FK-506 binding ability. FKBP6 interacted with HCV nonstructural protein 5A (NS5A) and also formed a complex with FKBP6 itself or FKBP8, which is known to be critical for HCV replication. The Val(121) of NS5A and TPR domains of FKBP6 were responsible for the interaction between NS5A and FKBP6. FKBP6 was colocalized with NS5A, FKBP8, and double-stranded RNA in HCV-infected cells. HCV replication was completely suppressed in FKBP6-knockout hepatoma cell lines, while the expression of FKBP6 restored HCV replication in FKBP6-knockout cells. A treatment with the FKBP8 inhibitor N-(N', N'-dimethylcarboxamidomethyl)cycloheximide impaired the formation of a homo- or hetero-complex consisting of FKBP6 and/or FKBP8, and suppressed HCV replication. HCV infection promoted the expression of FKBP6, but not that of FKBP8, in cultured cells and human liver tissue. These results indicate that FKBP6 is an HCV-induced host factor that supports viral replication in cooperation with NS5A.


Assuntos
Hepacivirus/fisiologia , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cicloeximida/análogos & derivados , Cicloeximida/farmacologia , Células HEK293 , Humanos , Microscopia de Fluorescência , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica/efeitos dos fármacos , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a Tacrolimo/antagonistas & inibidores , Proteínas de Ligação a Tacrolimo/genética , Proteínas não Estruturais Virais/química
13.
Sci Rep ; 5: 17047, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26592202

RESUMO

Sodium taurocholate cotransporting polypeptide (NTCP) has been reported as a functional receptor for hepatitis B virus (HBV) infection. However, HBV could not efficiently infect HepG2 cells expressing NTCP (NTCP-HepG2 cells) under adherent monolayer-cell conditions. In this study, NTCP was mainly detected in the basolateral membrane region, but not the apical site, of monolayer NTCP-HepG2 cells. We hypothesized that non-adherent cell conditions of infection would enhance HBV infectivity. Non-adherent NTCP-HepG2 cells were prepared by treatment with trypsin and EDTA, which did not degrade NTCP in the membrane fraction. HBV successfully infected NTCP-HepG2 cells at a viral dose 10 times lower in non-adherent phase than in adherent phase. Efficient infection of non-adherent NTCP-HepG2 cells with blood-borne or cell-culture-derived HBV was observed and was remarkably impaired in the presence of the myristoylated preS1 peptide. HBV could also efficiently infect HepaRG cells under non-adherent cell conditions. We screened several compounds using our culture system and identified proscillaridin A as a potent anti-HBV agent with an IC50 value of 7.2 nM. In conclusion, non-adherent host cell conditions of infection augmented HBV infectivity in an NTCP-dependent manner, thus providing a novel strategy to identify anti-HBV drugs and investigate the mechanism of HBV infection.


Assuntos
Antivirais/farmacologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Proscilaridina/farmacologia , Receptores Virais/genética , Simportadores/genética , Internalização do Vírus/efeitos dos fármacos , Bufanolídeos/farmacologia , Adesão Celular , Digitoxina/farmacologia , Digoxina/farmacologia , Expressão Gênica , Células Hep G2 , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Ensaios de Triagem em Larga Escala , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Ftalazinas/farmacologia , Receptores Virais/antagonistas & inibidores , Receptores Virais/metabolismo , Sinvastatina/farmacologia , Estrofantinas/farmacologia , Simportadores/antagonistas & inibidores , Simportadores/metabolismo , Transgenes , Proteínas do Envelope Viral/farmacologia
14.
Mar Drugs ; 13(11): 6759-73, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26561821

RESUMO

The current treatments of chronic hepatitis B (CHB) face a limited choice of vaccine, antibody and antiviral agents. The development of additional antiviral agents is still needed for improvement of CHB therapy. In this study, we established a screening system in order to identify compounds inhibiting the core promoter activity of hepatitis B virus (HBV). We prepared 80 extracts of marine organisms from the coral reefs of Indonesia and screened them by using this system. Eventually, two extracts showed high inhibitory activity (>95%) and low cytotoxicity (66% to 77%). Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy)-phenol (compound 1) and 3,4,5-tribromo-2-(2,4-dibromophenoxy)-phenol (compound 2), which are classified as polybrominated diphenyl ethers (PBDEs), were identified as anti-HBV agents in the extracts. Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner. The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively. These results suggest that our cell-based HBV core promoter assay system is useful to determine anti-HBV compounds, and that two PBDE compounds are expected to be candidates of lead compounds for the development of anti-HBV drugs.


Assuntos
Antivirais/farmacologia , Organismos Aquáticos/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Animais , Antivirais/administração & dosagem , Antivirais/isolamento & purificação , Linhagem Celular Tumoral , Recifes de Corais , Relação Dose-Resposta a Droga , Desenho de Fármacos , Células Hep G2 , Vírus da Hepatite B/genética , Ensaios de Triagem em Larga Escala , Humanos , Indonésia , Regiões Promotoras Genéticas
15.
Int J Mol Sci ; 16(8): 18439-53, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26262613

RESUMO

Hepatitis C virus (HCV) is an important etiological agent of severe liver diseases, including cirrhosis and hepatocellular carcinoma. The HCV genome encodes nonstructural protein 3 (NS3) helicase, which is a potential anti-HCV drug target because its enzymatic activity is essential for viral replication. Some anthracyclines are known to be NS3 helicase inhibitors and have a hydroxyanthraquinone moiety in their structures; mitoxantrone, a hydroxyanthraquinone analogue, is also known to inhibit NS3 helicase. Therefore, we hypothesized that the hydroxyanthraquinone moiety alone could also inhibit NS3 helicase. Here, we performed a structure-activity relationship study on a series of hydroxyanthraquinones by using a fluorescence-based helicase assay. Hydroxyanthraquinones inhibited NS3 helicase with IC50 values in the micromolar range. The inhibitory activity varied depending on the number and position of the phenolic hydroxyl groups, and among different hydroxyanthraquinones examined, 1,4,5,8-tetrahydroxyanthraquinone strongly inhibited NS3 helicase with an IC50 value of 6 µM. Furthermore, hypericin and sennidin A, which both have two hydroxyanthraquinone-like moieties, were found to exert even stronger inhibition with IC50 values of 3 and 0.8 µM, respectively. These results indicate that the hydroxyanthraquinone moiety can inhibit NS3 helicase and suggest that several key chemical structures are important for the inhibition.


Assuntos
Antracenos/farmacologia , Antraquinonas/farmacologia , Antivirais/farmacologia , Hepacivirus/enzimologia , Perileno/análogos & derivados , RNA Helicases/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Antracenos/química , Antraquinonas/química , Antivirais/química , Linhagem Celular , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Perileno/química , Perileno/farmacologia , RNA Helicases/metabolismo , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
16.
J Surg Case Rep ; 2015(6)2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26088054

RESUMO

An 80-year-old man with a history of en bloc resection of squamous cell carcinoma of the hard palate (T4aN0M0) was performed a lateral-window sinus lift of the edentulous area of the left maxillary molar region to facilitate future placement of dental implants.Two hours after the surgery, the patient complained of sudden malar swelling. Marked swelling was present from the left infraorbital region to the buccal region. The swelling was associated with air pockets at the alar base and in the angulus oculi medialis region and subcutaneous malar tissue. Emphysema appeared after the patient blew his nose. Therefore, the mucous membrane of the maxillary sinus might have had a small hole, and air might have entered the subcutaneous tissue via the bone window when the air pressure in the maxillary sinus increased with nose blowing. It is important to advise patients to avoid increasing the intraoral pressure after sinus-lift procedure.

17.
J Virol ; 88(22): 13352-66, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25210167

RESUMO

UNLABELLED: Equine hepacivirus (EHcV) has been identified as a closely related homologue of hepatitis C virus (HCV) in the United States, the United Kingdom, and Germany, but not in Asian countries. In this study, we genetically and serologically screened 31 serum samples obtained from Japanese-born domestic horses for EHcV infection and subsequently identified 11 PCR-positive and 7 seropositive serum samples. We determined the full sequence of the EHcV genome, including the 3' untranslated region (UTR), which had previously not been completely revealed. The polyprotein of a Japanese EHcV strain showed approximately 95% homology to those of the reported strains. HCV-like cis-acting RNA elements, including the stem-loop structures of the 3' UTR and kissing-loop interaction were deduced from regions around both UTRs of the EHcV genome. A comparison of the EHcV and HCV core proteins revealed that Ile(190) and Phe(191) of the EHcV core protein could be important for cleavage of the core protein by signal peptide peptidase (SPP) and were replaced with Ala and Leu, respectively, which inhibited intramembrane cleavage of the EHcV core protein. The loss-of-function mutant of SPP abrogated intramembrane cleavage of the EHcV core protein and bound EHcV core protein, suggesting that the EHcV core protein may be cleaved by SPP to become a mature form. The wild-type EHcV core protein, but not the SPP-resistant mutant, was localized on lipid droplets and partially on the lipid raft-like membrane in a manner similar to that of the HCV core protein. These results suggest that EHcV may conserve the genetic and biological properties of HCV. IMPORTANCE: EHcV, which shows the highest amino acid or nucleotide homology to HCV among hepaciviruses, was previously reported to infect horses from Western, but not Asian, countries. We herein report EHcV infection in Japanese-born horses. In this study, HCV-like RNA secondary structures around both UTRs were predicted by determining the whole-genome sequence of EHcV. Our results also suggest that the EHcV core protein is cleaved by SPP to become a mature form and then is localized on lipid droplets and partially on lipid raft-like membranes in a manner similar to that of the HCV core protein. Hence, EHcV was identified as a closely related homologue of HCV based on its genetic structure as well as its biological properties. A clearer understanding of the epidemiology, genetic structure, and infection mechanism of EHcV will assist in elucidating the evolution of hepaciviruses as well as the development of surrogate models for the study of HCV.


Assuntos
Genoma Viral , Hepacivirus/isolamento & purificação , Hepatite C/veterinária , Doenças dos Cavalos/virologia , RNA Viral/genética , Animais , Sequência Conservada , Ordem dos Genes , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/sangue , Cavalos , Japão , Dados de Sequência Molecular , RNA Viral/sangue , Análise de Sequência de DNA , Homologia de Sequência
18.
Molecules ; 19(4): 4006-20, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24699145

RESUMO

The helicase portion of the hepatitis C virus nonstructural protein 3 (NS3) is considered one of the most validated targets for developing direct acting antiviral agents. We isolated polybrominated diphenyl ether (PBDE) 1 from a marine sponge as an NS3 helicase inhibitor. In this study, we evaluated the inhibitory effects of PBDE (1) on the essential activities of NS3 protein such as RNA helicase, ATPase, and RNA binding activities. The structure-activity relationship analysis of PBDE (1) against the HCV ATPase revealed that the biphenyl ring, bromine, and phenolic hydroxyl group on the benzene backbone might be a basic scaffold for the inhibitory potency.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Éteres Difenil Halogenados/farmacologia , Poríferos/química , RNA Helicases/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Adenosina Trifosfatases/química , Animais , Antivirais/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Éteres Difenil Halogenados/isolamento & purificação , Hepacivirus/química , Hepacivirus/enzimologia , Humanos , RNA Helicases/química , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química
19.
Mar Drugs ; 12(1): 462-76, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24451189

RESUMO

Hepatitis C virus (HCV) is an important etiological agent that is responsible for the development of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV nonstructural protein 3 (NS3) helicase is a possible target for novel drug development due to its essential role in viral replication. In this study, we identified halisulfate 3 (hal3) and suvanine as novel NS3 helicase inhibitors, with IC50 values of 4 and 3 µM, respectively, from a marine sponge by screening extracts of marine organisms. Both hal3 and suvanine inhibited the ATPase, RNA binding, and serine protease activities of NS3 helicase with IC50 values of 8, 8, and 14 µM, and 7, 3, and 34 µM, respectively. However, the dengue virus (DENV) NS3 helicase, which shares a catalytic core (consisting mainly of ATPase and RNA binding sites) with HCV NS3 helicase, was not inhibited by hal3 and suvanine, even at concentrations of 100 µM. Therefore, we conclude that hal3 and suvanine specifically inhibit HCV NS3 helicase via an interaction with an allosteric site in NS3 rather than binding to the catalytic core. This led to the inhibition of all NS3 activities, presumably by inducing conformational changes.


Assuntos
Hepacivirus/enzimologia , Naftalenos/química , Naftalenos/farmacologia , Poríferos/metabolismo , Inibidores de Serina Proteinase/farmacologia , Sesterterpenos/química , Sesterterpenos/farmacologia , Ésteres do Ácido Sulfúrico/química , Ésteres do Ácido Sulfúrico/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Elétrons , Naftalenos/isolamento & purificação , RNA Viral/metabolismo , Serina Proteases/química , Sesterterpenos/isolamento & purificação , Ésteres do Ácido Sulfúrico/isolamento & purificação
20.
J Enzyme Inhib Med Chem ; 29(2): 223-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23432541

RESUMO

Hepatitis C virus nonstructural protein 3 (NS3) helicase is a promising target for developing new therapeutics. In this study, we identified cholesterol sulfate (CS) as a novel NS3 helicase inhibitor (IC50 = 1.7 ± 0.2 µM with a Hill coefficient of 3.9) by screening the extracts from marine organisms. The lack of the sulfate group, sterol structure or alkyl side chain of CS diminished the inhibition, suggesting that an anion binding and hydrophobic region in NS3 may be a target site of CS. It was further found that CS partly inhibits NS3-RNA binding activity, but exerted no or less inhibition against ATPase and serine protease activities. Moreover, we demonstrated that CS probably does not bind to RNA. Our findings suggest that CS may inhibit NS3 helicase not by abolishing the other NS3 activities but by inducing conformational changes via interaction with possible allosteric sites of NS3.


Assuntos
Antivirais/farmacologia , Ésteres do Colesterol/farmacologia , Hepacivirus/efeitos dos fármacos , RNA Helicases/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Antivirais/isolamento & purificação , Organismos Aquáticos/química , Ésteres do Colesterol/isolamento & purificação , Relação Dose-Resposta a Droga , Descoberta de Drogas , Hepacivirus/enzimologia , Estrutura Molecular , Ligação Proteica , Serina Proteases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA