Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 685: 149144, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-37922785

RESUMO

In-cell protein crystals which spontaneously crystallize in living cells, have recently been analyzed in investigations of their structures and biological functions. The crystals have been challenging to analyze structurally because of their small size. Therefore, the number of in-cell protein crystals in which the native structure has been determined is limited because most of the structures of in-cell crystals have been determined by recrystallization after dissolution. Some proteins have been reported to form intermolecular disulfide bonds in natural protein crystals that stabilize the crystals. Here, we focus on Cry1Aa, a cysteine-rich protein that crystallizes in Bacillus thuringiensis (Bt) and forms disulfide bonds. Previously, the full-length structure of 135 kDa Cry1Ac, which is the same size as Cry1Aa, was determined by recrystallization of dissolved protein from crystals purified from Bt cells. However, the formation of disulfide bonds has not been investigated because it was necessary to replace cysteine residues to prevent aggregation of the soluble protein. In this work, we succeeded in direct X-ray crystallographic analysis using crystals purified from Bt cells and characterized the cross-linked network of disulfide bonds within Cry1Aa crystals.


Assuntos
Bacillus thuringiensis , Bacillus thuringiensis/metabolismo , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Cisteína/metabolismo , Proteínas de Bactérias/metabolismo , Dissulfetos/metabolismo , Proteínas Hemolisinas/metabolismo
2.
Mol Cell ; 82(18): 3468-3483.e5, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932760

RESUMO

Endogenous parathyroid hormone (PTH) and PTH-related peptide (PTHrP) bind to the parathyroid hormone receptor 1 (PTH1R) and activate the stimulatory G-protein (Gs) signaling pathway. Intriguingly, the two ligands have distinct signaling and physiological properties: PTH evokes prolonged Gs activation, whereas PTHrP evokes transient Gs activation with reduced bone-resorption effects. The distinct molecular actions are ascribed to the differences in ligand recognition and dissociation kinetics. Here, we report cryoelectron microscopic structures of six forms of the human PTH1R-Gs complex in the presence of PTH or PTHrP at resolutions of 2.8 -4.1 Å. A comparison of the PTH-bound and PTHrP-bound structures reveals distinct ligand-receptor interactions underlying the ligand affinity and selectivity. Furthermore, five distinct PTH-bound structures, combined with computational analyses, provide insights into the unique and complex process of ligand dissociation from the receptor and shed light on the distinct durations of signaling induced by PTH and PTHrP.


Assuntos
Proteína Relacionada ao Hormônio Paratireóideo , Receptor Tipo 1 de Hormônio Paratireóideo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Hormônio Paratireóideo/química , Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/farmacologia , Proteína Relacionada ao Hormônio Paratireóideo/química , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo
3.
Nat Commun ; 13(1): 4714, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953475

RESUMO

Glutamate is a pivotal excitatory neurotransmitter in mammalian brains, but excessive glutamate causes numerous neural disorders. Almost all extracellular glutamate is retrieved by the glial transporter, Excitatory Amino Acid Transporter 2 (EAAT2), belonging to the SLC1A family. However, in some cancers, EAAT2 expression is enhanced and causes resistance to therapies by metabolic disturbance. Despite its crucial roles, the detailed structural information about EAAT2 has not been available. Here, we report cryo-EM structures of human EAAT2 in substrate-free and selective inhibitor WAY213613-bound states at 3.2 Å and 2.8 Å, respectively. EAAT2 forms a trimer, with each protomer consisting of transport and scaffold domains. Along with a glutamate-binding site, the transport domain possesses a cavity that could be disrupted during the transport cycle. WAY213613 occupies both the glutamate-binding site and cavity of EAAT2 to interfere with its alternating access, where the sensitivity is defined by the inner environment of the cavity. We provide the characterization of the molecular features of EAAT2 and its selective inhibition mechanism that may facilitate structure-based drug design for EAAT2.


Assuntos
Transportador 2 de Aminoácido Excitatório/química , Ácido Glutâmico , Animais , Sítios de Ligação , Encéfalo/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Mamíferos/metabolismo , Neuroglia/metabolismo
4.
Structure ; 30(10): 1411-1423.e4, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35981535

RESUMO

Signaling by single-pass transmembrane receptors often involves a formation of ligand-induced receptor dimers with particular conformation, and bivalent receptor binders can modulate receptor functions by inducing different receptor dimer conformations, although such agents are difficult to design. Here, we describe the generation of both antagonistic and agonistic receptor dimerizers toward PlexinB1 (PlxnB1), a receptor for semaphorin 4D (Sema4D), by grafting two different PlxnB1-binding peptides onto the human immunoglobulin G1 (IgG1) Fc protein. The function-modulating activity of a peptide Fc was strongly dependent on the type of the peptide as well as the grafting site, with the best variants showing activity at an nM concentration range. Structural analysis of each peptide-PlxnB1 complex revealed that the agonistic Fc dimerizes PlxnB1 in a face-to-face fashion similar to that induced by Sema4D, whereas antagonistic Fc would induce signaling-incompetent PlxnB1 dimer conformation, enforcing the idea that plexin activation is primarily controlled by the receptor orientation within the dimer.


Assuntos
Receptores de Superfície Celular , Semaforinas , Proteínas Ativadoras de GTPase , Humanos , Imunoglobulina G , Ligantes , Peptídeos , Receptores de Superfície Celular/metabolismo , Receptores Fc , Semaforinas/genética , Semaforinas/metabolismo
5.
Mol Cell ; 81(23): 4799-4809.e5, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34798056

RESUMO

The cytoplasmic polyamine maintains cellular homeostasis by chelating toxic metal cations, regulating transcriptional activity, and protecting DNA. ATP13A2 was identified as a lysosomal polyamine exporter responsible for polyamine release into the cytosol, and its dysfunction is associated with Alzheimer's disease and other neural degradation diseases. ATP13A2 belongs to the P5 subfamily of the P-type ATPase family, but its mechanisms remain unknown. Here, we report the cryoelectron microscopy (cryo-EM) structures of human ATP13A2 under four different conditions, revealing the structural coupling between the polyamine binding and the dephosphorylation. Polyamine is bound at the luminal tunnel and recognized through numerous electrostatic and π-cation interactions, explaining its broad specificity. The unique N-terminal domain is anchored to the lipid membrane to stabilize the E2P conformation, thereby accelerating the E1P-to-E2P transition. These findings reveal the distinct mechanism of P5B ATPases, thereby paving the way for neuroprotective therapy by activating ATP13A2.


Assuntos
Adenosina Trifosfatases/química , Lipídeos/química , Poliaminas/química , ATPases Translocadoras de Prótons/química , Sítios de Ligação , Microscopia Crioeletrônica , Citosol/metabolismo , Células HEK293 , Homeostase , Humanos , Lipídeos de Membrana/química , Micelas , Conformação Molecular , Fosforilação , Conformação Proteica
6.
Elife ; 102021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519269

RESUMO

The mTORC1 kinase complex regulates cell growth, proliferation, and survival. Because mis-regulation of DEPTOR, an endogenous mTORC1 inhibitor, is associated with some cancers, we reconstituted mTORC1 with DEPTOR to understand its function. We find that DEPTOR is a unique partial mTORC1 inhibitor that may have evolved to preserve feedback inhibition of PI3K. Counterintuitively, mTORC1 activated by RHEB or oncogenic mutation is much more potently inhibited by DEPTOR. Although DEPTOR partially inhibits mTORC1, mTORC1 prevents this inhibition by phosphorylating DEPTOR, a mutual antagonism that requires no exogenous factors. Structural analyses of the mTORC1/DEPTOR complex showed DEPTOR's PDZ domain interacting with the mTOR FAT region, and the unstructured linker preceding the PDZ binding to the mTOR FRB domain. The linker and PDZ form the minimal inhibitory unit, but the N-terminal tandem DEP domains also significantly contribute to inhibition.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli , Regulação da Expressão Gênica , Humanos , Processamento de Imagem Assistida por Computador , Peptídeos e Proteínas de Sinalização Intracelular/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Modelos Moleculares , Domínios PDZ , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes , Serina-Treonina Quinases TOR/genética
7.
Angew Chem Int Ed Engl ; 60(22): 12341-12345, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33759310

RESUMO

Protein assemblies can be designed for development of nano-bio materials. This has been achieved by modulating protein-protein interactions. However, fabrication of highly ordered protein assemblies remains challenging. Protein crystals, which have highly ordered arrangements of protein molecules, provide useful source matrices for synthesizing artificial protein assemblies. Here, we describe construction of a supramolecular filament structure by engineering covalent and non-covalent interactions in a protein crystal. Performing in-cell crystallization of Trypanosoma brucei cysteine protease cathepsin B (TbCatB), we achieved a precise arrangement of protein molecules while suppressing random aggregation due to disulfide bonds. We succeeded in synthesizing bundled filament from the crystals by autoxidation of cysteinyl thiols after the isolation of the crystals from living cells.


Assuntos
Catepsina B/química , Citoesqueleto/metabolismo , Proteínas de Protozoários/química , Catepsina B/genética , Catepsina B/metabolismo , Cristalização , Citoesqueleto/química , Concentração de Íons de Hidrogênio , Mutagênese , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo
8.
Sci Rep ; 10(1): 19305, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168855

RESUMO

In meso crystallization of membrane proteins relies on the use of lipids capable of forming a lipidic cubic phase (LCP). However, almost all previous crystallization trials have used monoacylglycerols, with 1-(cis-9-octadecanoyl)-rac-glycerol (MO) being the most widely used lipid. We now report that EROCOC17+4 mixed with 10% (w/w) cholesterol (Fig. 1) serves as a new matrix for crystallization and a crystal delivery medium in the serial femtosecond crystallography of Adenosine A2A receptor (A2AR). The structures of EROCOC17+4-matrix grown A2AR crystals were determined at 2.0 Å resolution by serial synchrotron rotation crystallography at a cryogenic temperature, and at 1.8 Å by LCP-serial femtosecond crystallography, using an X-ray free-electron laser at 4 and 20 °C sample temperatures, and are comparable to the structure of the MO-matrix grown A2AR crystal (PDB ID: 4EIY). Moreover, X-ray scattering measurements indicated that the EROCOC17+4/water system did not form the crystalline LC phase at least down to - 20 °C, in marked contrast to the equilibrium MO/water system, which transforms into the crystalline LC phase below about 17 °C. As the LC phase formation within the LCP-matrix causes difficulties in protein crystallography experiments in meso, this feature of EROCOC17+4 will expand the utility of the in meso method.


Assuntos
Cristalografia por Raios X/instrumentação , Lipídeos/química , Monoglicerídeos/química , Terpenos/química , Animais , Colesterol/química , Cristalização , Escherichia coli , Proteínas de Membrana/química , Receptores A2 de Adenosina/química , Células Sf9 , Spodoptera , Síncrotrons , Temperatura , Raios X
9.
Protein Sci ; 29(12): 2398-2407, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33016372

RESUMO

System xc - is an amino acid antiporter that imports L-cystine into cells and exports intracellular L-glutamate, at a 1:1 ratio. As L-cystine is an essential precursor for glutathione synthesis, system xc - supports tumor cell growth through glutathione-based oxidative stress resistance and is considered as a potential therapeutic target for cancer treatment. System xc - consists of two subunits, the light chain subunit SLC7A11 (xCT) and the heavy chain subunit SLC3A2 (also known as CD98hc or 4F2hc), which are linked by a conserved disulfide bridge. Although the recent structures of another SLC7 member, L-type amino acid transporter 1 (LAT1) in complex with CD98hc, have provided the structural basis toward understanding the amino acid transport mechanism, the detailed molecular mechanism of xCT remains unknown. To revealthe molecular mechanism, we performed single-particle analyses of the xCT-CD98hc complex. As wild-type xCT-CD98hc displayed poor stability and could not be purified to homogeneity, we applied a consensus mutagenesis approach to xCT. The consensus mutated construct exhibited increased stability as compared to the wild-type, and enabled the cryoelectron microscopy (cryo-EM) map to be obtained at 6.2 Å resolution by single-particle analysis. The cryo-EM map revealed sufficient electron density to assign secondary structures. In the xCT structure, the hash and arm domains are well resolved, whereas the bundle domain shows some flexibility. CD98hc is positioned next to the xCT transmembrane domain. This study provides the structural basis of xCT, and our consensus-based strategy could represent a good choice toward solving unstable protein structures.


Assuntos
Sistema y+ de Transporte de Aminoácidos/química , Sistema y+ de Transporte de Aminoácidos/ultraestrutura , Microscopia Crioeletrônica , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Cadeia Pesada da Proteína-1 Reguladora de Fusão/química , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/ultraestrutura , Células HEK293 , Humanos , Mutagênese , Domínios Proteicos , Estabilidade Proteica , Estrutura Secundária de Proteína , Células Sf9 , Spodoptera
10.
Sci Adv ; 6(29): eaba8105, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32832629

RESUMO

Calcium homeostasis modulator (CALHM) family proteins are Ca2+-regulated adenosine triphosphate (ATP)-release channels involved in neural functions including neurotransmission in gustation. Here, we present the cryo-electron microscopy (EM) structures of killifish CALHM1, human CALHM2, and Caenorhabditis elegans CLHM-1 at resolutions of 2.66, 3.4, and 3.6 Å, respectively. The CALHM1 octamer structure reveals that the N-terminal helix forms the constriction site at the channel pore in the open state and modulates the ATP conductance. The CALHM2 undecamer and CLHM-1 nonamer structures show the different oligomeric stoichiometries among CALHM homologs. We further report the cryo-EM structures of the chimeric construct, revealing that the intersubunit interactions at the transmembrane domain (TMD) and the TMD-intracellular domain linker define the oligomeric stoichiometry. These findings advance our understanding of the ATP conduction and oligomerization mechanisms of CALHM channels.

11.
Science ; 365(6458): 1149-1155, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31416931

RESUMO

In eukaryotic membranes, type IV P-type adenosine triphosphatases (P4-ATPases) mediate the translocation of phospholipids from the outer to the inner leaflet and maintain lipid asymmetry, which is critical for membrane trafficking and signaling pathways. Here, we report the cryo-electron microscopy structures of six distinct intermediates of the human ATP8A1-CDC50a heterocomplex at resolutions of 2.6 to 3.3 angstroms, elucidating the lipid translocation cycle of this P4-ATPase. ATP-dependent phosphorylation induces a large rotational movement of the actuator domain around the phosphorylation site in the phosphorylation domain, accompanied by lateral shifts of the first and second transmembrane helices, thereby allowing phosphatidylserine binding. The phospholipid head group passes through the hydrophilic cleft, while the acyl chain is exposed toward the lipid environment. These findings advance our understanding of the flippase mechanism and the disease-associated mutants of P4-ATPases.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Membrana/química , Proteínas de Transferência de Fosfolipídeos/química , Fosfolipídeos/metabolismo , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Sítios de Ligação , Microscopia Crioeletrônica , Células HEK293 , Humanos , Modelos Moleculares , Fosfatidilserinas , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Alinhamento de Sequência
12.
Nat Plants ; 5(3): 308-315, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30742036

RESUMO

The iron ion is an essential cofactor in several vital enzymatic reactions, such as DNA replication, oxygen transport, and respiratory and photosynthetic electron transfer chains, but its excess accumulation induces oxidative stress in cells. Vacuolar iron transporter 1 (VIT1) is important for iron homeostasis in plants, by transporting cytoplasmic ferrous ions into vacuoles. Modification of the VIT1 gene leads to increased iron content in crops, which could be used for the treatment of human iron deficiency diseases. Furthermore, a VIT1 from the malaria-causing parasite Plasmodium is considered as a potential drug target for malaria. Here we report the crystal structure of VIT1 from rose gum Eucalyptus grandis, which probably functions as a H+-dependent antiporter for Fe2+ and other transition metal ions. VIT1 adopts a novel protein fold forming a dimer of five membrane-spanning domains, with an ion-translocating pathway constituted by the conserved methionine and carboxylate residues at the dimer interface. The second transmembrane helix protrudes from the lipid membrane by about 40 Å and connects to a three-helical bundle, triangular cytoplasmic domain, which binds to the substrate metal ions and stabilizes their soluble form, thus playing an essential role in their transport. These mechanistic insights will provide useful information for the further design of genetically modified crops and the development of anti-malaria drugs.


Assuntos
Proteínas de Transporte de Cátions/química , Óleo de Eucalipto/química , Proteínas de Transporte de Cátions/metabolismo , Cristalografia por Raios X , Citoplasma/metabolismo , Ferro/metabolismo , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Vacúolos/metabolismo
13.
Nat Chem Biol ; 15(1): 18-26, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30510193

RESUMO

Prostaglandin E receptor EP4, a G-protein-coupled receptor, is involved in disorders such as cancer and autoimmune disease. Here, we report the crystal structure of human EP4 in complex with its antagonist ONO-AE3-208 and an inhibitory antibody at 3.2 Å resolution. The structure reveals that the extracellular surface is occluded by the extracellular loops and that the antagonist lies at the interface with the lipid bilayer, proximal to the highly conserved Arg316 residue in the seventh transmembrane domain. Functional and docking studies demonstrate that the natural agonist PGE2 binds in a similar manner. This structural information also provides insight into the ligand entry pathway from the membrane bilayer to the EP4 binding pocket. Furthermore, the structure reveals that the antibody allosterically affects the ligand binding of EP4. These results should facilitate the design of new therapeutic drugs targeting both orthosteric and allosteric sites in this receptor family.


Assuntos
Receptores de Prostaglandina E Subtipo EP4/química , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Regulação Alostérica , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Sítios de Ligação , Caprilatos/química , Caprilatos/metabolismo , Cristalografia por Raios X , Epoprostenol/análogos & derivados , Epoprostenol/química , Epoprostenol/metabolismo , Humanos , Ligantes , Bicamadas Lipídicas , Simulação de Acoplamento Molecular , Naftalenos/química , Naftalenos/metabolismo , Éteres Fenílicos/química , Éteres Fenílicos/metabolismo , Fenilbutiratos/química , Fenilbutiratos/metabolismo , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/genética , Spodoptera/genética
14.
Nat Commun ; 9(1): 4711, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413709

RESUMO

Endothelin receptors (ETA and ETB) are class A GPCRs activated by vasoactive peptide endothelins, and are involved in blood pressure regulation. ETB-selective signalling induces vasorelaxation, and thus selective ETB agonists are expected to be utilized for improved anti-tumour drug delivery and neuroprotection. Here, we report the crystal structures of human ETB receptor in complex with ETB-selective agonist, endothelin-3 and an ETB-selective endothelin analogue IRL1620. The structure of the endothelin-3-bound receptor reveals that the disruption of water-mediated interactions between W6.48 and D2.50 is critical for receptor activation, while these hydrogen-bonding interactions are partially preserved in the IRL1620-bound structure. Consistently, functional analysis reveals the partial agonistic effect of IRL1620. The current findings clarify the detailed molecular mechanism for the coupling between the orthosteric pocket and the G-protein binding, and the partial agonistic effect of IRL1620, thus paving the way for the design of improved agonistic drugs targeting ETB.


Assuntos
Receptor de Endotelina B/química , Receptor de Endotelina B/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Endotelina-3/metabolismo , Endotelinas/química , Endotelinas/metabolismo , Endotelinas/farmacologia , Células HEK293 , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptor de Endotelina B/agonistas , Fator de Crescimento Transformador alfa/metabolismo , beta-Arrestinas/metabolismo
15.
Commun Biol ; 1: 120, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30272000

RESUMO

Dietary iron absorption is regulated by duodenal cytochrome b (Dcytb), an integral membrane protein that catalyzes reduction of nonheme Fe3+ by electron transfer from ascorbate across the membrane. This step is essential to enable iron uptake by the divalent metal transporter. Here we report the crystallographic structures of human Dcytb and its complex with ascorbate and Zn2+. Each monomer of the homodimeric protein possesses cytoplasmic and apical heme groups, as well as cytoplasmic and apical ascorbate-binding sites located adjacent to each heme. Zn2+ coordinates to two hydroxyl groups of the apical ascorbate and to a histidine residue. Biochemical analysis indicates that Fe3+ competes with Zn2+ for this binding site. These results provide a structural basis for the mechanism by which Fe3+ uptake is promoted by reducing agents and should facilitate structure-based development of improved agents for absorption of orally administered iron.

16.
IUCrJ ; 4(Pt 5): 529-539, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989710

RESUMO

The progress in X-ray microbeam applications using synchrotron radiation is beneficial to structure determination from macromolecular microcrystals such as small in meso crystals. However, the high intensity of microbeams causes severe radiation damage, which worsens both the statistical quality of diffraction data and their resolution, and in the worst cases results in the failure of structure determination. Even in the event of successful structure determination, site-specific damage can lead to the misinterpretation of structural features. In order to overcome this issue, technological developments in sample handling and delivery, data-collection strategy and data processing have been made. For a few crystals with dimensions of the order of 10 µm, an elegant two-step scanning strategy works well. For smaller samples, the development of a novel method to analyze multiple isomorphous microcrystals was motivated by the success of serial femtosecond crystallography with X-ray free-electron lasers. This method overcame the radiation-dose limit in diffraction data collection by using a sufficient number of crystals. Here, important technologies and the future prospects for microcrystallography are discussed.

17.
Nat Struct Mol Biol ; 24(9): 758-764, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28805809

RESUMO

Endothelin receptors (ETRs) have crucial roles in vascular control and are targets for drugs designed to treat circulatory-system diseases and cancer progression. The nonpeptide dual-ETR antagonist bosentan is the first oral drug approved to treat pulmonary arterial hypertension. Here we report crystal structures of human endothelin ETB receptor bound to bosentan and to the ETB-selective analog K-8794, at 3.6-Å and 2.2-Å resolution, respectively. The K-8794-bound structure reveals the detailed water-mediated hydrogen-bonding network at the transmembrane core, which could account for the weak negative allosteric modulation of ETB by Na+ ions. The bosentan-bound structure reveals detailed interactions with ETB, which are probably conserved in the ETA receptor. A comparison of the two structures shows unexpected similarity between antagonist and agonist binding. Despite this similarity, bosentan sterically prevents the inward movement of transmembrane helix 6 (TM6), and thus exerts its antagonistic activity. These structural insights will facilitate the rational design of new ETR-targeting drugs.


Assuntos
Antagonistas dos Receptores de Endotelina/química , Antagonistas dos Receptores de Endotelina/metabolismo , Receptor de Endotelina B/química , Receptor de Endotelina B/metabolismo , Sulfonamidas/química , Sulfonamidas/metabolismo , Bosentana , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
18.
Nature ; 548(7667): 356-360, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28792932

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lipid composed of a phosphate group, a glycerol backbone, and a single acyl chain that varies in length and saturation. LPA activates six class A G-protein-coupled receptors to provoke various cellular reactions. Because LPA signalling has been implicated in cancer and fibrosis, the LPA receptors are regarded as promising drug targets. The six LPA receptors are subdivided into the endothelial differentiation gene (EDG) family (LPA1-LPA3) and the phylogenetically distant non-EDG family (LPA4-LPA6). The structure of LPA1 has enhanced our understanding of the EDG family of LPA receptors. By contrast, the functional and pharmacological characteristics of the non-EDG family of LPA receptors have remained unknown, owing to the lack of structural information. Although the non-EDG LPA receptors share sequence similarity with the P2Y family of nucleotide receptors, the LPA recognition mechanism cannot be deduced from the P2Y1 and P2Y12 structures because of the large differences in the chemical structures of their ligands. Here we determine the 3.2 Å crystal structure of LPA6, the gene deletion of which is responsible for congenital hair loss, to clarify the ligand recognition mechanism of the non-EDG family of LPA receptors. Notably, the ligand-binding pocket of LPA6 is laterally open towards the membrane, and the acyl chain of the lipid used for the crystallization is bound within this pocket, indicating the binding mode of the LPA acyl chain. Docking and mutagenesis analyses also indicated that the conserved positively charged residues within the central cavity recognize the phosphate head group of LPA by inducing an inward shift of transmembrane helices 6 and 7, suggesting that the receptor activation is triggered by this conformational rearrangement.


Assuntos
Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Receptores de Ácidos Lisofosfatídicos/química , Receptores de Ácidos Lisofosfatídicos/metabolismo , Alopecia/congênito , Alopecia/genética , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Cristalografia por Raios X , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Mutagênese , Filogenia , Estabilidade Proteica , Estrutura Secundária de Proteína , Receptores de Ácidos Lisofosfatídicos/genética , Especificidade por Substrato , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA