Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(5)2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790256

RESUMO

Much research has been conducted to determine how hair regeneration is regulated, as this could provide therapeutic, cosmetic, and even psychological interventions for hair loss. The current study focused on the hair growth effect and effective utilization of fatty oil obtained from Bryde's whales through a high-throughput DNA microarray approach in conjunction with immunohistochemical observations. The research also examined the mechanisms and factors involved in hair growth. In an experiment using female C57BL/6J mice, the vehicle control group (VC: propylene glycol: ethanol: water), the positive control group (MXD: 3% minoxidil), and the experimental group (WO: 20% whale oil) were topically applied to the dorsal skin of the mouse. The results showed that 3% MXD and 20% WO were more effective than VC in promoting hair growth, especially 20% WO. Furthermore, in hematoxylin and eosin-stained dorsal skin tissue, an increase in the number of hair follicles and subcutaneous tissue thickness was observed with 20% WO. Whole-genome transcriptome analysis also confirmed increases for 20% WO in filaggrin (Flg), a gene related to skin barrier function; fibroblast growth factor 21 (Fgf21), which is involved in hair follicle development; and cysteine-rich secretory protein 1 (Crisp1), a candidate gene for alopecia areata. Furthermore, the results of KEGG pathway analysis indicated that 20% WO may have lower stress and inflammatory responses than 3% MXD. Therefore, WO is expected to be a safe hair growth agent.


Assuntos
Cabelo , Óleos , Animais , Feminino , Camundongos , Biologia Computacional/métodos , Proteínas Filagrinas , Perfilação da Expressão Gênica/métodos , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Cabelo/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Minoxidil/administração & dosagem , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Pele/metabolismo , Pele/efeitos dos fármacos , Baleias , Óleos/administração & dosagem
2.
Nutr Res ; 118: 128-136, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37660501

RESUMO

Many studies have investigated the beneficial effects of n-3 polyunsaturated fatty acids, such as their potential for lowering lipid levels and reducing diabetes risk. However, few studies have specifically examined docosapentaenoic acid (DPA), an n-3 polyunsaturated fatty acid with limited availability in its pure form. We hypothesized that DPA would have lipid-lowering effects and improve insulin resistance in KK/Ta mice. To test our hypothesis, 7-week-old KK/Ta mice were fed a high-fat diet for 12 weeks to induce obesity before being divided into 3 groups and fed an experimental diet for 10 weeks. The experimental diets were: LSO, using lard and safflower oil as fat sources; SO, in which lard in the LSO diet was replaced with safflower oil; and DPA, in which lard in the LSO diet was replaced with DPA oil. After 10 weeks, plasma triglyceride and total cholesterol concentrations were significantly decreased in the DPA group, but not in the SO group. Sterol regulatory element-binding protein-1 and stearoyl-CoA desaturase-1 gene expressions involved in fatty acid synthesis in the liver were significantly lower in the DPA group compared with the LSO group. Plasma glucose concentrations were significantly decreased in both the SO group and the DPA group compared with the LSO group, whereas plasma insulin concentrations were significantly decreased in the DPA group alone. These results indicate that DPA has plasma lipid-lowering and hypoglycemic effects, possibly from suppression of fatty acid synthesis in the liver.


Assuntos
Diabetes Mellitus , Ácidos Graxos Ômega-3 , Animais , Camundongos , Glicemia/metabolismo , Óleo de Cártamo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Diabetes Mellitus/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos
3.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36902003

RESUMO

Sweat plays a critical role in human body, including thermoregulation and the maintenance of the skin environment and health. Hyperhidrosis and anhidrosis are caused by abnormalities in sweat secretion, resulting in severe skin conditions (pruritus and erythema). Bioactive peptide and pituitary adenylate cyclase-activating polypeptide (PACAP) was isolated and identified to activate adenylate cyclase in pituitary cells. Recently, it was reported that PACAP increases sweat secretion via PAC1R in mice and promotes the translocation of AQP5 to the cell membrane through increasing intracellular [Ca2+] via PAC1R in NCL-SG3 cells. However, intracellular signaling mechanisms by PACAP are poorly clarified. Here, we used PAC1R knockout (KO) mice and wild-type (WT) mice to observe changes in AQP5 localization and gene expression in sweat glands by PACAP treatment. Immunohistochemistry revealed that PACAP promoted the translocation of AQP5 to the lumen side in the eccrine gland via PAC1R. Furthermore, PACAP up-regulated the expression of genes (Ptgs2, Kcnn2, Cacna1s) involved in sweat secretion in WT mice. Moreover, PACAP treatment was found to down-regulate the Chrna1 gene expression in PAC1R KO mice. These genes were found to be involved in multiple pathways related to sweating. Our data provide a solid basis for future research initiatives in order to develop new therapies to treat sweating disorders.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Suor , Camundongos , Humanos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Suor/metabolismo , Sudorese , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Hipófise/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835581

RESUMO

The study aimed to understand mechanism/s of neuronal outgrowth in the rat adrenal-derived pheochromocytoma cell line (PC12) under pituitary adenylate cyclase-activating polypeptide (PACAP) treatment. Neurite projection elongation was suggested to be mediated via Pac1 receptor-mediated dephosphorylation of CRMP2, where GSK-3ß, CDK5, and Rho/ROCK dephosphorylated CRMP2 within 3 h after addition of PACAP, but the dephosphorylation of CRMP2 by PACAP remained unclear. Thus, we attempted to identify the early factors in PACAP-induced neurite projection elongation via omics-based transcriptomic (whole genome DNA microarray) and proteomic (TMT-labeled liquid chromatography-tandem mass spectrometry) analyses of gene and protein expression profiles from 5-120 min after PACAP addition. The results revealed a number of key regulators involved in neurite outgrowth, including known ones, called 'Initial Early Factors', e.g., genes Inhba, Fst, Nr4a1,2,3, FAT4, Axin2, and proteins Mis12, Cdk13, Bcl91, CDC42, including categories of 'serotonergic synapse, neuropeptide and neurogenesis, and axon guidance'. cAMP signaling and PI3K-Akt signaling pathways and a calcium signaling pathway might be involved in CRMP2 dephosphorylation. Cross-referencing previous research, we tried to map these molecular components onto potential pathways, and we may provide important new information on molecular mechanisms of neuronal differentiation induced by PACAP. Gene and protein expression data are publicly available at NCBI GSE223333 and ProteomeXchange, identifier PXD039992.


Assuntos
Fosfatidilinositol 3-Quinases , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Ratos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Células PC12 , Glicogênio Sintase Quinase 3 beta/genética , Fosfatidilinositol 3-Quinases/genética , Proteômica , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Crescimento Neuronal
5.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054857

RESUMO

Dry eye disease (DED) is caused by a reduction in the volume or quality of tears. The prevalence of DED is estimated to be 100 million in the developed world. As aging is a risk factor for DED, the prevalence of DED is expected to grow at a rapid pace in aging populations, thus creating an increased need for new therapies. This review summarizes DED medications currently in clinical use. Most current medications for DED focus on stimulating tear secretion, mucin secretion, or suppressing inflammation, rather than simply replenishing the ocular surface with moisture to improve symptoms. We recently reported that the neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) induces tear secretion and suppresses corneal injury caused by a reduction in tears. Moreover, it has been reported that a PACAP in water and a 0.9% saline solution at +4 °C showed high stability and achieved 80-90% effectiveness after 2 weeks of treatment. These results reveal PACAP as a candidate DED medication. Further research on the clinical applications of PACAP in DED is necessary.


Assuntos
Síndromes do Olho Seco/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Animais , Síndromes do Olho Seco/patologia , Humanos , Modelos Biológicos , Soluções Oftálmicas/farmacologia , Soluções Oftálmicas/uso terapêutico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Transdução de Sinais/efeitos dos fármacos , Lágrimas/efeitos dos fármacos
6.
Peptides ; 146: 170647, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34562532

RESUMO

The process of sweating plays an important role in the human body, including thermoregulation and maintenance of the environment and health of the skin. It is known that the conditions of hyperhidrosis and anhidrosis are caused by abnormalities in sweat secretion and can result in severe skin conditions such as pruritus and erythema, which significantly reduce the patient's quality of life. However, there are many aspects of the signaling mechanisms in the process of sweating that have not been clarified, and no effective therapies or therapeutic agents have yet been discovered. Previously, it was reported that pituitary adenylate cyclase-activating polypeptide (PACAP) promotes sweating, but details of the underlying mechanism has not been clarified. We used immortalized human eccrine gland cells (NCL-SG3 cell) to investigate how sweat secretion is induced by PACAP. Intracellular Ca2+ levels were increased in these cells following their exposure to physiological concentrations of PACAP. Intracellular Ca2+ was not elevated when cells were concomitantly treated with PA-8, a specific PAC1-R antagonist, suggesting that PAC1-R is involved in the elevation of intracellular Ca2+ levels in response to PACAP treatment. Furthermore, immunocytochemistry experiments showed that aquaporin-5 was translocated from the cytoplasm to the cell membrane by PACAP. These results suggest that PACAP acts on eccrine sweat glands to promote sweat secretion by translocation of aquaporin-5 to the cell membrane in response to increased levels of intracellular Ca2+. These findings also provide a solid basis for future research initiatives to develop new therapies to treat sweating disorders.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Glândulas Sudoríparas/efeitos dos fármacos , Aquaporina 5/metabolismo , Cálcio/metabolismo , Linhagem Celular Transformada , Humanos , Transporte Proteico , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Glândulas Sudoríparas/citologia , Glândulas Sudoríparas/metabolismo
7.
Neural Plast ; 2021: 2522454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422037

RESUMO

The present research investigates the molecular mechanism of neurite outgrowth (protrusion elongation) under pituitary adenylate cyclase-activating polypeptide (PACAP) 38 treatments using a rat adrenal-derived pheochromocytoma cell line-PC12. This study specifically looks into the regulation of PACAP38-induced collapsing response mediator protein 2 (CRMP2) previously identified in a mouse brain ischemia model and which could be recovered by PACAP38 treatment. Previously, DNA microarray analysis revealed that PACAP 38-mediated neuroprotection involved not only CRMP2 but also pathways related to glycogen synthase kinase-3ß (GSK-3ß) and other signaling components. Thus, to clarify whether CRMP2 acts directly on PACAP38 or through GSK-3ß as part of the mechanism of PACAP38-induced neurite outgrowth, we observed neurite outgrowth in the presence of GSK-3ß inhibitors and activators. PC12 cells were treated with PACAP38 being added to the cell culture medium at concentrations of 10-7 M, 10-8 M, and 10-9 M. Post PACAP38 treatment, immunostaining was used to confirm protrusion elongation of the PC12 cells, while RT-PCR, two-dimensional gel electrophoresis in conjunction with Western blotting, and inhibition experiments were performed to confirm the expression of the PACAP gene, its receptors, and downstream signaling components. Our data show that neurite protrusion elongation by PACAP38 (10-7 M) in PC12 cells is mediated through the PAC1-R receptor as demonstrated by its suppression by a specific inhibitor PA-8. Inhibitor experiments suggested that PACAP38-triggered neurite protrusion follows a GSK-3ß-regulated pathway, where the AKT and cAMP/ERK pathways are involved and where the inhibition of Rho/Roc could enhance neurite protrusion under PACAP38 stimulation. Although we could not yet confirm the exact role and position of CRMP2 in PACAP38-mediated PC12 cell elongation, it appears that its phosphorylation and dephosphorylation have a correlation with the neurite protrusion elongation through the interplay of CDK5, which needs to be investigated further.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Células PC12 , Ratos , Transdução de Sinais/efeitos dos fármacos
8.
Am J Physiol Lung Cell Mol Physiol ; 319(5): L786-L793, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877227

RESUMO

Bronchomotor tone is regulated by contraction and relaxation of airway smooth muscle (ASM). A weakened ASM relaxation might be a cause of airway hyperresponsiveness (AHR), a characteristic feature of bronchial asthma. Pituitary adenylyl cyclase-activating polypeptide (PACAP) is known as a mediator that causes ASM relaxation. To date, whether or not the PACAP responsiveness is changed in asthmatic ASM is unknown. The current study examined the hypothesis that relaxation induced by PACAP is reduced in bronchial smooth muscle (BSM) of allergic asthma. The ovalbumin (OA)-sensitized mice were repeatedly challenged with aerosolized OA to induce asthmatic reaction. Twenty-four hours after the last antigen challenge, the main bronchial smooth muscle (BSM) tissues were isolated. Tension study showed a BSM hyperresponsiveness to acetylcholine in the OA-challenged mice. Both quantitative RT-PCR and immunoblot analyses revealed a significant decrease in PAC1 receptor expression in BSMs of the diseased mice. Accordingly, in the antigen-challenged group, the PACAP-induced PAC1 receptor-mediated BSM relaxation was significantly attenuated, whereas the relaxation induced by vasoactive intestinal polypeptide was not changed. These findings suggest that the relaxation induced by PACAP is impaired in BSMs of experimental asthma due to a downregulation of its binding partner PAC1 receptor. Impaired BSM responsiveness to PACAP might contribute to the AHR in asthma.


Assuntos
Asma/metabolismo , Brônquios/metabolismo , Músculo Liso/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Tensoativos/metabolismo , Animais , Hiper-Reatividade Brônquica/metabolismo , Camundongos , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/fisiologia , Hipersensibilidade Respiratória/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
9.
J Antibiot (Tokyo) ; 64(2): 169-75, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21119679

RESUMO

FR901379 acylase, an enzyme that catalyzes the hydrolysis of the palmitoyl moiety of the antifungal lipopeptide FR901379, was purified from the culture broth of Streptomyces sp. no. 6907 (FERM BP-5809), revealing the 80 kDa, two-subunit heterodimeric protein characteristic of the ß-lactam acylase family. Using oligodeoxyribonucleotide primers constructed on the basis of the N-terminal amino acid sequence of each purified subunit, the gene was identified from a cosmid library of Streptomyces sp. no. 6907 DNA. The deduced 775 amino acid sequence corresponded to a single polypeptide chain containing two subunits, and it shared 41.7% identity with aculeacin A acylase from Actinoplanes utahensis NRRL12052. FR901379 acylase activity was found to be 250-fold higher in the recombinant Streptomyces lividans 1326 carrying the cloned gene than in the original Streptomyces sp. no. 6907 strain.


Assuntos
Amidoidrolases/genética , Amidoidrolases/metabolismo , Clonagem Molecular , Peptídeos Cíclicos/metabolismo , Streptomyces/enzimologia , Streptomyces/genética , Amidoidrolases/química , Amidoidrolases/isolamento & purificação , Primers do DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Biblioteca Gênica , Dados de Sequência Molecular , Peso Molecular , Reação em Cadeia da Polimerase , Subunidades Proteicas , Análise de Sequência de DNA , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA