Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
ACS Sens ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836608

RESUMO

Immune checkpoint inhibitors (ICIs) targeting programmed cell death ligand 1 (PD-L1), or its receptor, PD-1 have improved survival in patients with non-small-cell lung cancer (NSCLC). Assessment of PD-L1 expression requires tissue biopsy or fine needle aspiration that are currently used to identify patients most likely to respond to single agent anti-PD-1/PD-L1 therapy. However, obtaining sufficient tissue to generate a PD-L1 tissue proportion score (TPS) ≥ 50% using immunohistochemistry remains a challenge that potentially may be overcome by liquid biopsies. This study utilized a mesoporous gold sensor (MGS) assay to examine the phosphorylation status of PD-L1 in plasma extracellular vesicles (EV pPD-L1) and PD-L1 levels in plasma from NSCLC patient samples and their association with tumor PD-L1 TPS. The 3-dimensional mesoporous network of the electrodes provides a large surface area, high signal-to-noise ratio, and a superior electro-conductive framework, thereby significantly improving the detection sensitivity of PD-L1 nanosensing. Test (n = 20) (Pearson's r = 0.99) and validation (n = 45) (Pearson's r = 0.99) cohorts show that EV pPD-L1 status correlates linearly with the tumor PD-L1 TPS assessed by immunohistochemistry irrespective of the tumor stage, with 64% of patients overall showing detectable EV pPD-L1 levels in plasma. In contrast to the EV pPD-L1 results, plasma PD-L1 levels did not correlate with the tumor PD-L1 TPS score or EV pPD-L1 levels. These data demonstrate that EV pPD-L1 levels may be used to select patients for appropriate PD-1 and PD-L1 ICI therapy regimens in early, locally advanced, and advanced NSCLC and should be tested further in randomized controlled trials. Most importantly, the assay used has a less than 24h turnaround time, facilitating adoption of the test into the routine diagnostic evaluation of patients prior to therapy.

2.
J Am Chem Soc ; 146(15): 10599-10607, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567740

RESUMO

The success of electrochemical CO2 reduction at high current densities hinges on precise interfacial transportation and the local concentration of gaseous CO2. However, the creation of efficient CO2 transportation channels remains an unexplored frontier. In this study, we design and synthesize hydrophobic porous Cu2O spheres with varying pore sizes to unveil the nanoporous channel's impact on gas transfer and triple-phase interfaces. The hydrophobic channels not only facilitate rapid CO2 transportation but also trap compressed CO2 bubbles to form abundant and stable triple-phase interfaces, which are crucial for high-current-density electrocatalysis. In CO2 electrolysis, in situ spectroscopy and density functional theory results reveal that atomic edges of concave surfaces promote C-C coupling via an energetically favorable OC-COH pathway, leading to overwhelming CO2-to-C2+ conversion. Leveraging optimal gas transportation and active site exposure, the hydrophobic porous Cu2O with a 240 nm pore size (P-Cu2O-240) stands out among all the samples and exhibits the best CO2-to-C2+ productivity with remarkable Faradaic efficiency and formation rate up to 75.3 ± 3.1% and 2518.2 ± 8.1 µmol h-1 cm-2, respectively. This study introduces a novel paradigm for efficient electrocatalysts that concurrently addresses active site design and gas-transfer challenges.

3.
Small ; 20(22): e2308805, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38185733

RESUMO

Minimally invasive procedures assisted by soft robots for surgery, diagnostics, and drug delivery have unprecedented benefits over traditional solutions from both patient and surgeon perspectives. However, the translation of such technology into commercialization remains challenging. The lack of perception abilities is one of the obstructive factors paramount for a safe, accurate and efficient robot-assisted intervention. Integrating different types of miniature sensors onto robotic end-effectors is a promising trend to compensate for the perceptual deficiencies in soft robots. For example, haptic feedback with force sensors helps surgeons to control the interaction force at the tool-tissue interface, impedance sensing of tissue electrical properties can be used for tumor detection. The last decade has witnessed significant progress in the development of multimodal sensors built on the advancement in engineering, material science and scalable micromachining technologies. This review article provides a snapshot on common types of integrated sensors for soft medical robots. It covers various sensing mechanisms, examples for practical and clinical applications, standard manufacturing processes, as well as insights on emerging engineering routes for the fabrication of novel and high-performing sensing devices.


Assuntos
Robótica , Humanos , Procedimentos Cirúrgicos Robóticos
4.
Biosens Bioelectron ; 249: 115984, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219464

RESUMO

Immune checkpoint proteins (ICPs) play a major role in a patient's immune response against cancer. Tumour cells usually express those proteins to communicate with immune cells as a process of escaping the anti-cancer immune response. Detecting the major functional immune checkpoint proteins present on cancer cells (such as circulating tumor cells or CTCs) and examining the heterogeneity in their expression at the single-cell level could play a crucial role in both cancer diagnosis and the monitoring of therapy. In this study, we develop a mesoporous gold biosensor to precisely assess ICP heterogeneity in individual cancer cells within a lung cancer model. The platform utilizes a nanostructured mesoporous gold surface to capture CTCs and a Surface Enhanced Raman Scattering (SERS) readout to identify and monitor the expression of key ICP proteins (PD-L1, B7H4, CD276, CD80) in lung cancer cells. The homogeneous and abundant pores in mesoporous 3D gold nanostructures enable increased antibody loading on-chip and an enhanced SERS signal, which are key to our single cell capture, and accurate analysis of ICPs in cancer cells with high sensitivity. Our lung cancer cell line model data showed that our method can detect single cells and analyse the expression of four lung cancer associated ICPs on individual cell surfaces during treatment. To show the potential of our mesoporous gold biosensor in analysing clinical samples, we tested 9 longitudinal Peripheral Blood Mononuclear Cells (PBMC) samples from lung cancer patient before and after therapy. Our mesoporous biosensor successfully captured single CTCs and found that the expression of ICPs in CTCs is highly heterogeneous in both pre-treatment and treated PBMC samples isolated from lung cancer patient blood. We suggest that our findings will help clinicians in selecting the most appropriate therapy for patients.


Assuntos
Técnicas Biossensoriais , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Proteínas de Checkpoint Imunológico , Leucócitos Mononucleares , Ouro , Células Neoplásicas Circulantes/patologia , Antígenos B7
5.
Kyobu Geka ; 76(9): 719-722, 2023 Sep.
Artigo em Japonês | MEDLINE | ID: mdl-37735733

RESUMO

The natural course of Stanford type A acute aortic dissection (AAAD) has a poor prognosis. Early diagnosis is crucial, but in clinical practice some patients do not have typical symptoms, leading to a delay in diagnosis. We encountered a patient who complained only of shoulder pain and moderate respiratory distress. A chest computed tomography( CT) examination showed a dilated ascending aorta and a massive left hemothorax with minimal pericardial effusion. Intraoperative findings revealed aortic dissection of the ascending aorta and a congenital defect on the left pericardium. We performed graft replacement of the aortic root and ascending aorta. Usually, cardiac tamponade is a fatal complication of AAAD. However, in this case, the congenital pericardial defect drained the hemorrhage into the thoracic cavity and relieved cardiac tamponade. AAAD with a congenital pericardial defect may present clinically atypical. In this case, the patient could be saved by surgery without developing circulatory failure due to cardiac tamponade.


Assuntos
Dissecção Aórtica , Tamponamento Cardíaco , Anormalidades Cardiovasculares , Cavidade Torácica , Humanos , Tamponamento Cardíaco/diagnóstico por imagem , Tamponamento Cardíaco/etiologia , Tamponamento Cardíaco/cirurgia , Dissecção Aórtica/complicações , Dissecção Aórtica/diagnóstico por imagem , Dissecção Aórtica/cirurgia , Aorta/diagnóstico por imagem , Aorta/cirurgia
6.
Chem Soc Rev ; 52(14): 4755-4832, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37403690

RESUMO

Diversification of polymer waste recycling is one of the solutions to improve the current environmental scenario. Upcycling is a promising strategy for converting polymer waste into molecular intermediates and high-value products. Although the catalytic transformations into small molecules have been actively discussed, the methods and characteristics of upcycling into new materials have not yet been addressed. Recently, the functionalisation of polymer wastes (polyethylene terephthalate bottles, polypropylene surgical masks, rubber tires, etc.) and their conversion into new materials with enhanced functionality have been proposed as an appealing alternative for dealing with polymer waste recycling/treatment. In this review, the term 'functional upcycling' is introduced to designate any method of post-polymerisation modification or surface functionalisation without considerable polymer chain destruction to produce a new upcycled material with added value. This review explores the functional upcycling strategy with detailed consideration of the most common polymers, i.e., polystyrene, poly(methyl methacrylate), polyethylene, polypropylene, polyurethane, polyethylene terephthalate, polyvinyl chloride, polycarbonate, and rubber. We discuss the composition of plastic waste, reactivity, available physical/chemical agents for modification, and the interconnection between their properties and application. To date, upcycled materials have been successfully applied as adsorbents (including CO2), catalysts, electrode materials for energy storage and sensing, demonstrating a high added value. Importantly, the reviewed reports indicated that the specific performance of upcycled materials is generally comparable or higher than that of similar materials prepared from virgin polymer feedstock. All these advantages promote functional upcycling as a promising diversification approach against the common postprocessing methods employed for polymer waste. Finally, to identify the limitations and suggest future scope of research for each polymer, we comparatively analysed the aspects of functional upcycling with those of chemical and mechanical recycling, considering the energy and resource costs, toxicity of the used chemicals, environmental footprint, and the value added to the product.

7.
Small ; 19(42): e2303221, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37330649

RESUMO

The design and development of efficient catalysts for electrochemical nitrogen reduction reaction (ENRR) under ambient conditions are critical for the alternative ammonia (NH3 ) synthesis from N2 and H2 O, wherein iron-based electrocatalysts exhibit outstanding NH3 formation rate and Faradaic efficiency (FE). Here, the synthesis of porous and positively charged iron oxyhydroxide nanosheets by using layered ferrous hydroxide as a starting precursor, which undergoes topochemical oxidation, partial dehydrogenated reaction, and final delamination, is reported. As the electrocatalyst of ENRR, the obtained nanosheets with a monolayer thickness and 10-nm mesopores display exceptional NH3 yield rate (28.5 µg h-1 mgcat. -1 ) and FE (13.2%) at a potential of -0.4 V versus RHE in a phosphate buffered saline (PBS) electrolyte. The values are much higher than those of the undelaminated bulk iron oxyhydroxide. The larger specific surface area and positive charge of the nanosheets are beneficial for providing more exposed reactive sites as well as retarding hydrogen evolution reaction. This study highlights the rational control on the electronic structure and morphology of porous iron oxyhydroxide nanosheets, expanding the scope of developing non-precious iron-based highly efficient ENRR electrocatalysts.

8.
Mater Horiz ; 10(9): 3548-3558, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37272483

RESUMO

The poor cycling stability of faradaic materials owing to volume expansion and stress concentration during faradaic processes limits their use in large-scale electrochemical deionization (ECDI) applications. Herein, we developed a "soft-hard" interface by introducing conducting polymer hydrogels (CPHs), that is, polyvinyl alcohol/polypyrrole (PVA/PPy), to support the uniform distribution of Prussian blue analogues (e.g., copper hexacyanoferrate (CuHCF)). In this design, the soft buffer layer of the hydrogel effectively alleviates the stress concentration of CuHCF during the ion-intercalation process, and the conductive skeleton of the hydrogel provides charge-transfer pathways for the electrochemical process. Notably, the engineered CuHCF@PVA/PPy demonstrates an excellent salt-adsorption capacity of 22.7 mg g-1 at 10 mA g-1, fast salt-removal rate of 1.68 mg g-1 min-1 at 100 mA g-1, and low energy consumption of 0.49 kW h kg-1. More importantly, the material could maintain cycling stability with 90% capacity retention after 100 cycles, which is in good agreement with in situ X-ray diffraction tests and finite element simulations. This study provides a simple strategy to construct three-dimensional conductive polymer hydrogel structures to improve the desalination capacity and cycling stability of faradaic materials with universality and scalability, which promotes the development of high-performance electrodes for ECDI.

9.
Angew Chem Int Ed Engl ; 62(40): e202305371, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37291046

RESUMO

Ammonia borane (AB) is a promising material for chemical H2 storage owing to its high H2 density (up to 19.6 wt %). However, the development of an efficient catalyst for driving H2 evolution through AB hydrolysis remains challenging. Therefore, a visible-light-driven strategy for generating H2 through AB hydrolysis was implemented in this study using Ni-Pt nanoparticles supported on phosphorus-doped TiO2 (Ni-Pt/P-TiO2 ) as photocatalysts. Through surface engineering, P-TiO2 was prepared by phytic-acid-assisted phosphorization and then employed as an ideal support for immobilizing Ni-Pt nanoparticles via a facile co-reduction strategy. Under visible-light irradiation at 283 K, Ni40 Pt60 /P-TiO2 exhibited improved recyclability and a high turnover frequency of 967.8 mol H 2 ${{_{{\rm H}{_{2}}}}}$ molPt -1 min-1 . Characterization experiments and density functional theory calculations indicated that the enhanced performance of Ni40 Pt60 /P-TiO2 originated from a combination of the Ni-Pt alloying effect, the Mott-Schottky junction at the metal-semiconductor interface, and strong metal-support interactions. These findings not only underscore the benefits of utilizing multipronged effects to construct highly active AB-hydrolyzing catalysts, but also pave a path toward designing high-performance catalysts by surface engineering to modulate the electronic metal-support interactions for other visible-light-induced reactions.

10.
J Colloid Interface Sci ; 638: 220-230, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36738545

RESUMO

This work reports the incorporation of coordinated water into Ni-BTC nanorods (Ni-BTC-O) which induces their structural transformation to Ni-BTC nanofibres (Ni-BTC-F). The carbonization of the Ni-BTC nanofibres at 600 °C results in the formation of carbon nanotube (CNT)-decorated hierarchical porous nickel/carbon hybrid (labelled as Ni/C-600) with enlarged pores. In contrast, the Ni/C hybrid obtained from the carbonization of the original (unmodified) Ni-BTC nanorods (Ni-BTC-O) at 600 °C (labelled as Ni-BTC-O-600) exhibits smaller pore size and does not show the formation of CNTs. The Ni/C-600 hybrid derived from Ni-BTC-F shows a very high adsorption capacity of 686.8 mg g-1 toward methyl blue (MB) dye. This is approximately 4.8 times higher than the adsorption capacity of Ni-BTC-O-600 (144.1 mg g-1). The higher adsorption performance of Ni/C-600 relative to Ni-BTC-O-600 can be attributed to its larger pore volume, hierarchical porosity, and additional adsorption sites provided by the CNTs. In addition, the Ni/C-600 hybrid can maintain 90% of its adsorption capacity after 5 consecutive cycles, demonstrating its potential as an efficient and recyclable adsorbent for MB dye.


Assuntos
Estruturas Metalorgânicas , Nanotubos de Carbono , Estruturas Metalorgânicas/química , Níquel/química , Porosidade , Adsorção
11.
ACS Nano ; 17(4): 3346-3357, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744876

RESUMO

Construction of a well-defined mesoporous nanostructure is crucial for applying nonnoble metals in catalysis and biomedicine owing to their highly exposed active sites and accessible surfaces. However, it remains a great challenge to controllably synthesize superparamagnetic CoFe-based mesoporous nanospheres with tunable compositions and exposed large pores, which are sought for immobilization or adsorption of guest molecules for magnetic capture, isolation, preconcentration, and purification. Herein, a facile assembly strategy of a block copolymer was developed to fabricate a mesoporous CoFeB amorphous alloy with abundant metallic Co/Fe atoms, which served as an ideal scaffold for well-dispersed loading of Au nanoparticles (∼3.1 nm) via the galvanic replacement reaction. The prepared Au-CoFeB possessed high saturation magnetization as well as uniform and large open mesopores (∼12.5 nm), which provided ample accessibility to biomolecules, such as nucleic acids, enzymes, proteins, and antibodies. Through this distinctive combination of superparamagnetism (CoFeB) and biofavorability (Au), the resulting Au-CoFeB was employed as a dispersible nanovehicle for the direct capture and isolation of p53 autoantibody from serum samples. Highly sensitive detection of the autoantibody was achieved with a limit of detection of 0.006 U/mL, which was 50 times lower than that of the conventional p53-ELISA kit-based detection system. Our assay is capable of quantifying differential expression patterns for detecting p53 autoantibodies in ovarian cancer patients. This assay provides a rapid, inexpensive, and portable platform with the potential to detect a wide range of clinically relevant protein biomarkers.


Assuntos
Nanopartículas Metálicas , Feminino , Humanos , Nanopartículas Metálicas/química , Autoanticorpos , Ouro/química , Proteína Supressora de Tumor p53 , Nanopartículas Magnéticas de Óxido de Ferro
12.
Chemosphere ; 312(Pt 1): 137031, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36397304

RESUMO

In the present study, an eco-friendly method for the preparation of carbon quantum dots (CQDs) is demonstrated using hydrothermal treatment of laurel leaves. The optical and structural characteristics of the prepared CQDs are investigated using transmission electron microscopy (TEM), X-ray photoelectron (XPS), fluorescent and UV-visible spectroscopies, Fourier transform infrared (FTIR), and X-ray diffraction (XRD). The quartz crystal microbalance (QCM) sensor designed and modified with CQDs is capable of detecting formaldehyde vapors in the presence of other interfering chemical-vapor analytes. The changes in the frequency of the QCM sensor are linearly correlated with the injected formaldehyde concentrations. The sensing properties of formaldehyde, including sensitivity and reversibility, are investigated. Detection of formaldehyde in the presence of humidity is carefully discussed for home or workplace room environment use. The adsorption kinetics of various VOCs vapors are also calculated and discussed.


Assuntos
Pontos Quânticos , Pontos Quânticos/química , Carbono/química , Técnicas de Microbalança de Cristal de Quartzo , Microscopia Eletrônica de Transmissão , Formaldeído
13.
Chem Sci ; 13(45): 13574-13581, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36507158

RESUMO

The large-scale application of nanozymes remains a significant challenge owing to their unsatisfactory catalytic performances. Featuring a unique electronic structure and coordination environment, single-atom nanozymes provide great opportunities to vividly mimic the specific metal catalytic center of natural enzymes and achieve superior enzyme-like activity. In this study, the spin state engineering of Fe single-atom nanozymes (FeNC) is employed to enhance their peroxidase-like activity. Pd nanoclusters (PdNC) are introduced into FeNC, whose electron-withdrawing properties rearrange the spin electron occupation in Fe(ii) of FeNC-PdNC from low spin to medium spin, facilitating the heterolysis of H2O2 and timely desorption of H2O. The spin-rearranged FeNC-PdNC exhibits greater H2O2 activation activity and rapid reaction kinetics compared to those of FeNC. As a proof of concept, FeNC-PdNC is used in the immunosorbent assay for the colorimetric detection of prostate-specific antigen and achieves an ultralow detection limit of 0.38 pg mL-1. Our spin-state engineering strategy provides a fundamental understanding of the catalytic mechanism of nanozymes and facilitates the design of advanced enzyme mimics.

14.
Front Immunol ; 13: 1016914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341379

RESUMO

Background: Systemic sclerosis (SSc) is a multiple-organ disease characterized by vascular damage, autoimmunity, and tissue fibrosis. Organ injuries such as interstitial lung diseases (ILD), resulting from inflammatory and fibrosis processes, lead to poor prognosis. Although autoantibodies are detected in the serum of patients with SSc, the mechanisms by which immune cells are involved in tissue inflammation and fibrosis is not fully understood. Recent studies have revealed carcinoembryonic antigen related cell adhesion molecule (CEACAM)-positive monocytes are involved in murine bleomycin-induced lung fibrosis. We investigated CEACAM-positive monocytes in patients with SSc to clarify the role of monocytes in the pathogenesis of SSc. Methods: The proportion of of CEACAM-positive classical monocytes in healthy controls (HCs) and patients with rheumatoid arthritis (RA) and SSc was evaluated using flow cytometry. The correlation between the proportion of CEACAM-positive monocytes and clinical parameters was analyzed in patients with SSc. Gene expression microarrays were performed in CEACAM-positive and negative monocytes in patients with SSc. Infiltration of CEACAM-positive monocytes into scleroderma skin was evaluated by immunohistochemical staining. Results: The proportion of CEACAM-positive classical monocytes was increased in patients with early SSc within 2 years after diagnosis, which positively correlated with ESR, serum IgG, and serum KL-6 and negatively correlated with %forced vital capacity. The percentage of CEACAM-positive monocytes decreased after immunosuppressive therapy. CEACAM6-positive cells among classical monocytes were significantly increased in patients with SSc compared with HCs and patients with rheumatoid arthritis. SSc serum induced CEACAM6 expression on monocytes from HCs. Functionally, CEACAM-positive monocytes produced higher levels of TNF-α and IL-1ß compared to CEACAM-negative cells and showed activation of the NF-κB pathway. Furthermore, CEACAM6-positive monocytes infiltrated the dermis of SSc. Conclusions: CEACAM-positive monocytes showed inflammatory phenotypes and may be involved in the tissue inflammation and fibrosis in early SSc. CEACAM-positive monocytes may be one of biomarkers to detect patients with progressive ILD, requiring therapeutic intervention.


Assuntos
Artrite Reumatoide , Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Camundongos , Animais , Monócitos/metabolismo , Doenças Pulmonares Intersticiais/diagnóstico , Fibrose , Artrite Reumatoide/patologia , Inflamação/patologia
15.
ACS Nano ; 16(7): 10890-10903, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35816450

RESUMO

The integration of micro- and nanoelectronics into or onto biomedical devices can facilitate advanced diagnostics and treatments of digestive disorders, cardiovascular diseases, and cancers. Recent developments in gastrointestinal endoscopy and balloon catheter technologies introduce promising paths for minimally invasive surgeries to treat these diseases. However, current therapeutic endoscopy systems fail to meet requirements in multifunctionality, biocompatibility, and safety, particularly when integrated with bioelectronic devices. Here, we report materials, device designs, and assembly schemes for transparent and stable cubic silicon carbide (3C-SiC)-based bioelectronic systems that facilitate tissue ablation, with the capability for integration onto the tips of endoscopes. The excellent optical transparency of SiC-on-glass (SoG) allows for direct observation of areas of interest, with superior electronic functionalities that enable multiple biological sensing and stimulation capabilities to assist in electrical-based ablation procedures. Experimental studies on phantom, vegetable, and animal tissues demonstrated relatively short treatment times and low electric field required for effective lesion removal using our SoG bioelectronic system. In vivo experiments on an animal model were conducted to explore the versatility of SoG electrodes for peripheral nerve stimulation, showing an exciting possibility for the therapy of neural disorders through electrical excitation. The multifunctional features of SoG integrated devices indicate their high potential for minimally invasive, cost-effective, and outcome-enhanced surgical tools, across a wide range of biomedical applications.


Assuntos
Compostos Inorgânicos de Carbono , Compostos de Silício , Animais , Eletrônica , Eletrodos
16.
J Colloid Interface Sci ; 616: 210-220, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35203034

RESUMO

Transition metal phosphides, especially bimetallic phosphides, are promising noble-metal-free electrocatalysts for hydrogen evolution reaction (HER). However, their inferior charge transfer ability constrains further performance improvement. In this work, a facile strategy is reported to fabricate Co2P/Ni2P/carbon nanotube (CNT) composite from a precursor Co-Ni Prussian blue analogue. The combination of Co2P/Ni2P and CNT endows Co2P/Ni2P/CNT with improved electrical conductivity and a richer electrochemically active surface area. As a result, the Co2P/Ni2P/CNT composite exhibits desirable HER activities across a wide pH range, delivering a benchmark current density of 10 mA cm-2 at overpotentials as low as 151 and 202 mV in 0.5 M H2SO4 and 1 M KOH electrolytes, respectively, as well as remarkable electrocatalytic stabilities over 48 h in both electrolytes. This strategy enables the design of high-performance electrocatalysts for efficient and stable hydrogen generation.

17.
J Immunol ; 208(5): 1057-1065, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149531

RESUMO

T follicular regulatory (Tfr) cells are a subset of CD4+ T cells that express CXCR5 and migrate into germinal centers (GCs). They regulate GC reactions by communicating with T follicular helper (Tfh) and B cells. TNF inhibitors are used in inflammatory diseases; however, the generation of autoantibodies or anti-drug Abs sometimes causes problems. Because TNFR2 signaling is important for suppressive functions of regulatory T cells, we investigated the role of TNFR2 on human Tfr cells. Tfr cells stimulated with MR2-1 (an anti-TNFR2 agonistic Ab) were analyzed for cell proliferation, Foxp3 expression, and surface molecules. Tfh/B cell proliferation, IgM production, and differentiation in cocultures with MR2-1-stimulated Tfr cells were examined. Tfr cells express a high level of TNFR2. MR2-1 stimulation altered the gene expression profile of Tfr cells. Cell proliferation and Foxp3 expression of Tfr cells were enhanced by MR2-1. MR2-1-stimulated Tfr cells expressed ICOS and Programmed cell death protein 1 and significantly suppressed Tfh/B cell proliferation, IgM production, and B cell differentiation. TNFR2-stimulated Tfr cells retained the migration function according to the CXCL13 gradient. In conclusion, we showed that TNFR2-stiumulated Tfr cells can regulate Tfh and B cells. Aberrant antibody production during TNF inhibitor treatment might be, at least in part, associated with TNFR2 signaling inhibition in Tfr cells. In addition, expansion and maturation of Tfr cells via TNFR2 stimulation in vitro may be useful for a cell-based therapy in inflammatory and autoimmune diseases to control GC reactions.


Assuntos
Linfócitos B/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Células T Auxiliares Foliculares/imunologia , Linfócitos T Reguladores/imunologia , Doenças Autoimunes/terapia , Linfócitos B/citologia , Antígeno B7-H1/metabolismo , Diferenciação Celular/imunologia , Movimento Celular/imunologia , Proliferação de Células , Quimiocina CXCL13/metabolismo , Fatores de Transcrição Forkhead/biossíntese , Perfilação da Expressão Gênica , Centro Germinativo/citologia , Humanos , Imunoglobulina M/biossíntese , Proteína Coestimuladora de Linfócitos T Induzíveis/biossíntese , Ativação Linfocitária/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores CXCR5/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/antagonistas & inibidores , Transdução de Sinais/imunologia , Fatores de Necrose Tumoral/metabolismo
18.
Small ; 18(18): e2107450, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35128790

RESUMO

Electrochemical CO2 reduction to valuable ethylene and ethanol offers a promising strategy to lower CO2 emissions while storing renewable electricity. Cu-based catalysts have shown the potential for CO2 -to-ethylene/ethanol conversion, but still suffer from low activity and selectivity. Herein, the effects of surface and interface structures in Cu-based catalysts for CO2 -to-ethylene/ethanol production are systematically discussed. Both reactions involve three crucial steps: formation of CO intermediate, CC coupling, and hydrodeoxygenation of C2 intermediates. For ethylene, the key step is CC coupling, which can be enhanced by tailoring the surface structures of catalyst such as step sites on facets, Cu0 /Cuδ+ species and nanopores, as well as the optimized molecule-catalyst and electrolyte-catalyst interfaces further promoting the higher ethylene production. While the controllable hydrodeoxygenation of C2 intermediate is important for ethanol, which can be achieved by tuning the stability of oxygenate intermediates through the metallic cluster induced special atomic configuration and bimetallic synergy induced the double active sites on catalyst surface. Additionally, constraining CO coverage by the complex-catalyst interface and stabilizing CO bond by N-doped carbon/Cu interface can also enhance the ethanol selectivity. The structure-performance relationships will provide the guidance for the design of Cu-based catalysts for highly efficient reduction of CO2 .

19.
Chem Commun (Camb) ; 58(7): 1009-1012, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34940767

RESUMO

Herein, we propose a solvent-assisted approach for preparing Ni-MOF microflowers with high specific capacitance and excellent rate capability as an electrode material for supercapacitors. The high electrochemical performance of this Ni-MOF is attributed to the fast ion transport and low electrical resistance resulting from its hierarchical flower-like structure, and the capacitance contribution from nickel hydroxide species.

20.
Small Methods ; 5(10): e2100679, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34927951

RESUMO

2D heterostructures exhibit a considerable potential in electrolytic water splitting due to their high specific surface areas, tunable electronic properties, and diverse hybrid compositions. However, the fabrication of well-defined 2D mesoporous amorphous-crystalline heterostructures with highly active heterointerfaces remains challenging. Herein, an efficient 2D heterostructure consisting of amorphous nickel boron oxide (Ni-Bi ) and crystalline mesoporous iridium (meso-Ir) is designed for water splitting, referred to as Ni-Bi /meso-Ir. Benefiting from well-defined 2D heterostructures and strong interfacial coupling, the resulting mesoporous dual-phase Ni-Bi /meso-Ir possesses abundant catalytically active heterointerfaces and boosts the exposure of active sites, compared to their crystalline and amorphous mono-counterparts. The electronic state of the iridium sites is tuned favorably by hybridizing with Ni-Bi layers. Consequently, the Ni-Bi /meso-Ir heterostructures show superior and stable electrochemical performance toward both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in an alkaline electrolyte.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA