Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Invest New Drugs ; 38(1): 140-147, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31289984

RESUMO

Purpose We examined the feasibility, efficacy, and safety of TS-1 add-on therapy (TAT) in Japanese patients with triple-negative breast caner (TNBC). Methods TAT (TS-1, 80 mg/m2/day, BID, PO), consisting of the 21-day cycles of 14-day consecutive administration followed by 7-day drug holiday, was conducted for 365 days. The median follow-up was 75.2 months (range, 7.3-103.3 months). The primary endpoint was the feasibility of TAT. The secondary endpoints included relapse-free survival (RFS), overall survival (OS), and safety. Results 63 Japanese patients with TNBC (median age, 52.5 years; range, 23.7-68.6 years) were examined. Among them, 34 (54.0%) were postmenopausal, 54 (93.7%) had TNBC of common histological type, 51 (81.0%) had T1 to 3 tumors, 63 (100%) had undergone standardized surgery, and 44 (69.8%) and 19 (30.2%) had undergone neoadjuvant chemotherapy and adjuvant chemotherapy, respectively. The 365-day cumulative rate of TS-1 administration was 68.3% (95% confidence interval, 55.3-79.4), being comparable to 65.8% previously reported for gastric cancer. The 5-year RFS rates were 52.3% and 84.2% in the neoadjuvant and adjuvant chemotherapy groups, respectively, and the 5-year OS rates were 68.0% and 89.5%, respectively. The most common adverse events (AEs) were leucocyte count decreased (50.8%), total bilirubin decreased (44.4%), and pigmentation (42.9%). AEs were manageable clinically, and any grade 4 AEs did not develop. Conclusions The 365-day cumulative rate of TS-1 administration in TNBC patients was comparable to that in gastric cancer patients despite previous chemotherapy with anthracyclines and/or taxanes. TAT was feasible for TNBC patients after standard primary therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimioterapia Adjuvante/mortalidade , Terapia Neoadjuvante/mortalidade , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Adulto , Idoso , Docetaxel/administração & dosagem , Epirubicina/administração & dosagem , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Paclitaxel/administração & dosagem , Prognóstico , Silicatos/administração & dosagem , Taxa de Sobrevida , Titânio/administração & dosagem , Neoplasias de Mama Triplo Negativas/patologia
2.
Cancers (Basel) ; 9(11)2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084134

RESUMO

Numerous mutations have been observed in the Anaplastic Lymphoma Kinase (ALK) receptor tyrosine kinase (RTK) in both germline and sporadic neuroblastoma. Here, we have investigated the Y1278S mutation, observed in four patient cases, and its potential importance in the activation of the full length ALK receptor. Y1278S is located in the 1278-YRASYY-1283 motif of the ALK activation loop, which has previously been reported to be important in the activation of the ALK kinase domain. In this study, we have characterized activation loop mutations within the context of the full length ALK employing cell culture and Drosophila melanogaster model systems. Our results show that the Y1278S mutant observed in patients with neuroblastoma harbors gain-of-function activity. Secondly, we show that the suggested interaction between Y1278 and other amino acids might be of less importance in the activation process of the ALK kinase than previously proposed. Thirdly, of the three individual tyrosines in the 1278-YRASYY-1283 activation loop, we find that Y1283 is the critical tyrosine in the activation process. Taken together, our observations employing different model systems reveal new mechanistic insights on how the full length ALK receptor is activated and highlight differences with earlier described activation mechanisms observed in the NPM-ALK fusion protein, supporting a mechanism of activation more in line with those observed for the Insulin Receptor (InR).

3.
Nat Cell Biol ; 18(4): 451-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26974662

RESUMO

The apical and basolateral membranes of epithelia are insulated from each other, preventing the transfer of extracellular proteins from one side to the other. Thus, a signalling protein produced apically is not expected to reach basolateral receptors. Evidence suggests that Wingless, the main Drosophila Wnt, is secreted apically in the embryonic epidermis. However, in the wing imaginal disc epithelium, Wingless is mostly seen on the basolateral membrane where it spreads from secreting to receiving cells. Here we examine the apico-basal movement of Wingless in Wingless-producing cells of wing imaginal discs. We find that it is presented first on the apical surface before making its way to the basolateral surface, where it is released and allowed to interact with signalling receptors. We show that Wingless transcytosis involves dynamin-dependent endocytosis from the apical surface. Subsequent trafficking from early apical endosomes to the basolateral surface requires Godzilla, a member of the RNF family of membrane-anchored E3 ubiquitin ligases. Without such transport, Wingless signalling is strongly reduced in this tissue.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Discos Imaginais/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Asas de Animais/metabolismo , Proteína Wnt1/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Endossomos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Discos Imaginais/embriologia , Hibridização in Situ Fluorescente , Microscopia Confocal , Interferência de RNA , Transcitose , Ubiquitina-Proteína Ligases/genética , Asas de Animais/embriologia , Proteína Wnt1/genética
4.
Elife ; 4: e09811, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26418745

RESUMO

Aberrant activation of anaplastic lymphoma kinase (ALK) has been described in a range of human cancers, including non-small cell lung cancer and neuroblastoma (Hallberg and Palmer, 2013). Vertebrate ALK has been considered to be an orphan receptor and the identity of the ALK ligand(s) is a critical issue. Here we show that FAM150A and FAM150B are potent ligands for human ALK that bind to the extracellular domain of ALK and in addition to activation of wild-type ALK are able to drive 'superactivation' of activated ALK mutants from neuroblastoma. In conclusion, our data show that ALK is robustly activated by the FAM150A/B ligands and provide an opportunity to develop ALK-targeted therapies in situations where ALK is overexpressed/activated or mutated in the context of the full length receptor.


Assuntos
Citocinas/metabolismo , Ativação Enzimática , Receptores Proteína Tirosina Quinases/metabolismo , Quinase do Linfoma Anaplásico , Linhagem Celular , Humanos , Dados de Sequência Molecular , Ligação Proteica , Análise de Sequência de DNA
5.
Biochem J ; 459(1): 27-36, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24387786

RESUMO

Diverse cellular processes depend on endocytosis, intracellular vesicle trafficking, sorting and exocytosis, and processes that are regulated post-transcriptionally by modifications such as phosphorylation and ubiquitylation. The PA (protease-associated) domain E3 ligases, such as GodzillaCG10277 in Drosophila melanogaster and RNF167 (RING finger protein 167) in humans, have been implicated in the regulation of cellular endosome trafficking. In the present study, we have characterized point mutations in the RING (really interesting new gene) domain of human RNF13 and RNF167, which have been identified in human tumour samples, that abrogate ubiquitin ligase activity as well as function. In the present study, we have also identified a functional role for the PA domain, which is required for endosomal localization of these proteins. Although the PA domain point mutations of RNF13 and RNF167 identified in human tumours are ligase active, the resultant mutant proteins are mislocalized within the cell. Thus the PA domain E3 ligases examined in the present study appear to require both E3 ligase activity as well as an intact PA domain to efficiently target and ubiquitylate their cellular substrates.


Assuntos
Biomarcadores Tumorais/genética , Glicoproteínas/genética , Peptídeo Hidrolases/genética , Mutação Puntual/genética , Ubiquitina-Proteína Ligases/genética , Sequência de Aminoácidos , Biomarcadores Tumorais/química , Biomarcadores Tumorais/metabolismo , Endossomos/genética , Endossomos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Dados de Sequência Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína/fisiologia , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
6.
Development ; 140(15): 3156-66, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23824577

RESUMO

The Jelly belly (Jeb)/Anaplastic Lymphoma Kinase (Alk) signalling pathway regulates myoblast fusion in the circular visceral mesoderm (VM) of Drosophila embryos via specification of founder cells. However, only a limited number of target molecules for this pathway are described. We have investigated the role of the Lame Duck (Lmd) transcription factor in VM development in relationship to Jeb/Alk signal transduction. We show that Alk signalling negatively regulates Lmd activity post-transcriptionally through the MEK/MAPK (ERK) cascade resulting in a relocalisation of Lmd protein from the nucleus to cytoplasm. It has previously been shown that downregulation of Lmd protein is necessary for the correct specification of founder cells. In the visceral mesoderm of lmd mutant embryos, fusion-competent myoblasts seem to be converted to 'founder-like' cells that are still able to build a gut musculature even in the absence of fusion. The ability of Alk signalling to downregulate Lmd protein requires the N-terminal 140 amino acids, as a Lmd(141-866) mutant remains nuclear in the presence of active ALK and is able to drive robust expression of the Lmd downstream target Vrp1 in the developing VM. Our results suggest that Lmd is a target of Jeb/Alk signalling in the VM of Drosophila embryos.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Fatores de Regulação Miogênica/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transporte Ativo do Núcleo Celular , Quinase do Linfoma Anaplásico , Animais , Animais Geneticamente Modificados , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Genes de Insetos , Sistema de Sinalização das MAP Quinases , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Desenvolvimento Muscular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Fatores de Regulação Miogênica/química , Fatores de Regulação Miogênica/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais
7.
Dis Model Mech ; 6(2): 373-82, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23104988

RESUMO

Neuroblastoma is a childhood extracranial solid tumour that is associated with a number of genetic changes. Included in these genetic alterations are mutations in the kinase domain of the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (RTK), which have been found in both somatic and familial neuroblastoma. In order to treat patients accordingly requires characterisation of these mutations in terms of their response to ALK tyrosine kinase inhibitors (TKIs). Here, we report the identification and characterisation of two novel neuroblastoma ALK mutations (A1099T and R1464STOP), which we have investigated together with several previously reported but uncharacterised ALK mutations (T1087I, D1091N, T1151M, M1166R, F1174I and A1234T). In order to understand the potential role of these ALK mutations in neuroblastoma progression, we have employed cell culture-based systems together with the model organism Drosophila as a readout for ligand-independent activity. Mutation of ALK at position 1174 (F1174I) generates a gain-of-function receptor capable of activating intracellular targets such as ERK (extracellular signal regulated kinase) and STAT3 (signal transducer and activator of transcription 3) in a ligand-independent manner. Analysis of these previously uncharacterised ALK mutants and comparison with ALK(F1174) mutants suggests that ALK mutations observed in neuroblastoma fall into three classes. These classes are: (i) gain-of-function ligand-independent mutations such as ALK(F1174l), (ii) kinase-dead ALK mutants, e.g. ALK(I1250T) (Schönherr et al., 2011a) and (iii) ALK mutations that are ligand-dependent in nature. Irrespective of the nature of the observed ALK mutants, in every case the activity of the mutant ALK receptors could be abrogated by the ALK inhibitor crizotinib (Xalkori/PF-02341066), albeit with differing levels of sensitivity.


Assuntos
Drosophila melanogaster/enzimologia , Mutação/genética , Neuroblastoma/enzimologia , Neuroblastoma/genética , Receptores Proteína Tirosina Quinases/genética , Quinase do Linfoma Anaplásico , Animais , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Crizotinibe , Modelos Animais de Doenças , Humanos , Concentração Inibidora 50 , Proteínas Mutantes/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neuritos/patologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Células PC12 , Fenótipo , Fosforilação/efeitos dos fármacos , Estrutura Terciária de Proteína , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Ratos , Receptores Proteína Tirosina Quinases/química
8.
Biochem J ; 440(3): 405-13, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21838707

RESUMO

Mutations in the kinase domain of ALK (anaplastic lymphoma kinase) have recently been shown to be important for the progression of the childhood tumour neuroblastoma. In the present study we investigate six of the putative reported constitutively active ALK mutations, in positions G1128A, I1171N, F1174L, R1192P, F1245C and R1275Q. Our analyses were performed in cell-culture-based systems with both mouse and human ALK mutant variants and subsequently in a Drosophila melanogaster model system. Our investigation addressed the transforming potential of the putative gain-of-function ALK mutations as well as their signalling potential and the ability of two ATP-competitive inhibitors, Crizotinib (PF-02341066) and NVP-TAE684, to abrogate the activity of ALK. The results of the present study indicate that all mutations tested are of an activating nature and thus are implicated in tumour initiation or progression of neuroblastoma. Importantly for neuroblastoma patients, all ALK mutations used in the present study can be blocked by the inhibitors, although some mutants exhibited higher levels of drug sensitivity than others.


Assuntos
Antineoplásicos/farmacologia , Mutação de Sentido Incorreto , Neuroblastoma/genética , Pirazóis/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Receptores Proteína Tirosina Quinases/genética , Quinase do Linfoma Anaplásico , Animais , Animais Geneticamente Modificados , Proliferação de Células , Transformação Celular Neoplásica , Olho Composto de Artrópodes/anormalidades , Olho Composto de Artrópodes/efeitos dos fármacos , Crizotinibe , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos , Neuritos/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Células PC12 , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo
9.
Transl Oncol ; 4(4): 258-65, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21804922

RESUMO

Activating mutations in the kinase domain of anaplastic lymphoma kinase (ALK) have recently been shown to be an important determinant in the genetics of the childhood tumor neuroblastoma. Here we discuss an in-depth analysis of one of the reported gain-of-function ALK mutations-ALK(I1250T)-identified in the germ line DNA of one patient. Our analyses were performed in cell culture-based systems and subsequently confirmed in a Drosophila model. The results presented here indicate that the germ line ALK(I1250T) mutation is most probably not a determinant for tumor initiation or progression and, in contrast, seems to generate a kinase-dead mutation in the ALK receptor tyrosine kinase (RTK). Consistent with this, stimulation with agonist ALK antibodies fails to lead to stimulation of ALK(I1250T) and we were unable to detect tyrosine phosphorylation under any circumstances. In agreement, ALK(I1250T) is unable to activate downstream signaling pathways or to mediate neurite outgrowth, in contrast to the activated wild-type ALK receptor or the activating ALK(F1174S) mutant. Identical results were obtained when the ALK(I1250T) mutant was expressed in a Drosophila model, confirming the lack of activity of this mutant ALK RTK. We suggest that the ALK(I1250T) mutation leads to a kinase-dead ALK RTK, in stark contrast to assumed gain-of-function status, with significant implications for patients reported to carry this particular ALK mutation.

10.
Pflugers Arch ; 462(2): 267-79, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21559843

RESUMO

Impairment of lung liquid absorption can lead to severe respiratory symptoms, such as those observed in pulmonary oedema. In the adult lung, liquid absorption is driven by cation transport through two pathways: a well-established amiloride-sensitive Na(+) channel (ENaC) and, more controversially, an amiloride-insensitive channel that may belong to the cyclic nucleotide-gated (CNG) channel family. Here, we show robust CNGA1 (but not CNGA2 or CNGA3) channel expression principally in rat alveolar type I cells; CNGA3 was expressed in ciliated airway epithelial cells. Using a rat in situ lung liquid clearance assay, CNG channel activation with 1 mM 8Br-cGMP resulted in an approximate 1.8-fold stimulation of lung liquid absorption. There was no stimulation by 8Br-cGMP when applied in the presence of either 100 µM L: -cis-diltiazem or 100 nM pseudechetoxin (PsTx), a specific inhibitor of CNGA1 channels. Channel specificity of PsTx and amiloride was confirmed by patch clamp experiments showing that CNGA1 channels in HEK 293 cells were not inhibited by 100 µM amiloride and that recombinant αßγ-ENaC were not inhibited by 100 nM PsTx. Importantly, 8Br-cGMP stimulated lung liquid absorption in situ, even in the presence of 50 µM amiloride. Furthermore, neither L: -cis-diltiazem nor PsTx affected the ß(2)-adrenoceptor agonist-stimulated lung liquid absorption, but, as expected, amiloride completely ablated it. Thus, transport through alveolar CNGA1 channels, located in type I cells, underlies the amiloride-insensitive component of lung liquid reabsorption. Furthermore, our in situ data highlight the potential of CNGA1 as a novel therapeutic target for the treatment of diseases characterised by lung liquid overload.


Assuntos
GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Isoformas de Proteínas/metabolismo , Alvéolos Pulmonares/metabolismo , Absorção , Amilorida/metabolismo , Animais , Aquaporina 5/metabolismo , Transporte Biológico/fisiologia , GMP Cíclico/análogos & derivados , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Diuréticos/metabolismo , Venenos Elapídicos/metabolismo , Feminino , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Pulmão/citologia , Masculino , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Ratos , Ratos Wistar
12.
J Biol Chem ; 284(15): 9885-91, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19208624

RESUMO

Vascular endothelial growth factor (VEGF-A) and its family proteins are crucial regulators of blood vessel formation and vascular permeability. Snake venom has recently been shown to be an exogenous source of unique VEGF (known as VEGF-F), and now, two types of VEGF-F with distinct biochemical properties have been reported. Here, we show that VEGF-Fs (venom-type VEGFs) are highly variable in structure and function among species, in contrast to endogenous tissue-type VEGFs (VEGF-As) of snakes. Although the structures of tissue-type VEGFs are highly conserved among venomous snake species and even among all vertebrates, including humans, those of venom-type VEGFs are extensively variegated, especially in the regions around receptor-binding loops and C-terminal putative coreceptor-binding regions, indicating that highly frequent variations are located around functionally key regions of the proteins. Genetic analyses suggest that venom-type VEGF gene may have developed from a tissue-type gene and that the unique sequence of its C-terminal region was generated by an alteration in the translation frame in the corresponding exons. We further verified that a novel venom-type VEGF from Bitis arietans displays unique properties distinct from already known VEGFs. Our results may provide evidence of a novel mechanism causing the generation of multiple snake toxins and also of a new model of molecular evolution.


Assuntos
Venenos de Serpentes/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Clonagem Molecular , Éxons , Humanos , Íntrons , Cinética , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade da Espécie , Fatores de Tempo
13.
Biochem Biophys Res Commun ; 379(4): 872-5, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19126400

RESUMO

VEGF-induced vascular barrier disruptions, formation of fenestrae and vesiculo-vacuolar organelles (VVOs), are involved in enhancing vascular permeability in metastatic and edematous diseases. Here, we analyzed vascular permeability enhanced by VEGFs with different receptor selectivity using biological and ultrastructural methods. VEGF-A(165), which stimulates both Flt-1 and KDR, induced the formation of both fenestrae and VVOs at a similar rate, while VEGF-F, a KDR-specific VEGF vammin, predominantly induced the formation of fenestrae with an approximately 5-fold more potent vascular permeability response than VEGF-A(165). This is the first report showing that VEGFs with different receptor selectivity evoke distinct changes in vascular ultrastructure.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Venenos de Víboras/farmacologia , Animais , Capilares/efeitos dos fármacos , Capilares/ultraestrutura , Endotélio Vascular/ultraestrutura , Cobaias , Microscopia Eletrônica de Transmissão
14.
J Biochem ; 145(3): 365-75, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19106157

RESUMO

Cysteine-rich secretory proteins (CRISPs) are expressed in spermatocytes and granules of neutrophils in mammals, and are associated with sperm maturation and host defense. Related proteins have recently been recovered in snake venoms, and some of the snake venom-derived CRISPs exhibit ion channel blocking activity. Here we isolated and identified two novel CRISPs (kaouthin-1 and kaouthin-2) from the venom of Naja kaouthia (Elapidae), and cloned the encoding cDNAs. Kaouthin-1 and kaouthin-2 were classified into two broad sister groups of Elapidae, the Asian species and the marine/Australian species, respectively. Sequence comparisons reveal that the high-frequency variable regions among snake venom CRISPs define a continuous line on the molecular surface of the N-terminal pathogenesis-related protein-1 (PR-1) domain and the C-terminal cysteine-rich domain (CRD). Snake venom proteins generally display efficient molecular diversity around functionally key regions, suggesting that the PR-1 domain of CRISPs is important for the recognition of target molecules.


Assuntos
Venenos Elapídicos/química , Glicoproteínas/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Venenos Elapídicos/genética , Venenos Elapídicos/isolamento & purificação , Glicoproteínas/genética , Glicoproteínas/isolamento & purificação , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Especificidade da Espécie , Eletricidade Estática
15.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 10): 1034-42, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18931410

RESUMO

Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction by retinal photoreceptors and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins belong to a cysteine-rich secretory protein (CRISP) family containing an N-terminal pathogenesis-related proteins of group 1 (PR-1) domain and a C-terminal cysteine-rich domain (CRD). PsTx and Pdc are highly homologous proteins, but their blocking affinities on CNG channels are different: PsTx blocks both the olfactory and retinal channels with approximately 15-30-fold higher affinity than Pdc. To gain further insights into their structure and function, the crystal structures of PsTx, Pdc and Zn2+-bound Pdc were determined. The structures revealed that most of the amino-acid-residue differences between PsTx and Pdc are located around the concave surface formed between the PR-1 domain and the CRD, suggesting that the concave surface is functionally important for CNG-channel binding and inhibition. A structural comparison in the presence and absence of Zn2+ ion demonstrated that the concave surface can open and close owing to movement of the CRD upon Zn2+ binding. The data suggest that PsTx and Pdc occlude the pore entrance and that the dynamic motion of the concave surface facilitates interaction with the CNG channels.


Assuntos
Cisteína/química , Ativação do Canal Iônico , Canais Iônicos/química , Venenos de Serpentes/química , Sequência de Aminoácidos , Linhagem Celular , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
16.
Biochem J ; 411(3): 515-22, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18251716

RESUMO

VEGF (vascular endothelial growth factor) regulates neovascularization through binding to its receptor KDR (kinase insert domain-containing receptor; VEGF receptor-2). We recently identified a catalytically inactive PLA(2) (phospholipase A(2)) homologue (KDR-bp) in the venom of eastern cottonmouth (Agkistrodon piscivorus piscivorus) as a third KDR-binding protein, in addition to VEGF(165) and tissue inhibitor of metalloproteinase-3. KDR-bp binds to the extracellular domain of KDR with a K(d) of 10(-8) M, resulting in specific blockade of endothelial cell growth induced by VEGF(165). Inactive PLA(2) homologues are widely distributed in the venoms of Viperidae snakes and are known to act as myotoxins. In the present study, we demonstrated that KDR-binding ability is a common characteristic for inactive PLA(2) homologues in snake venom, but not for active PLA(2)s such as neurotoxic and platelet aggregation-modulating PLA(2)s. To understand better the KDR and KDR-bp interaction, we resolved the binding region of KDR-bp using eight synthetic peptides designed based on the structure of KDR-bp. A synthetic peptide based on the structure of the C-terminal loop region of KDR-bp showed high affinity for KDR, but other peptides did not, suggesting that the C-terminal loop region of KDR-bp is involved in the interaction with KDR. The results of the present study provide insight into the binding of inactive PLA(2) homologues to KDR, and may also assist in the design of novel anti-KDR molecules for anti-angiogenic therapy.


Assuntos
Fosfolipases A2/metabolismo , Venenos de Serpentes/enzimologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Sequência Conservada , Ativação Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/química , Peptídeos/metabolismo , Fosfolipases A2/química , Fosfolipases A2/isolamento & purificação , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Eletricidade Estática , Ressonância de Plasmônio de Superfície , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
17.
Curr Pharm Des ; 13(28): 2872-86, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17979732

RESUMO

In studies of blood coagulation and the vascular system, snake venom toxins have been indispensable in elucidating the complex physiological mechanisms that govern coagulation and the vascular system in mammals, given their potency and highly specific biological effects. The various components of snake venom toxins can be classified according to their mechanism of action, for example, serine proteases, metalloproteinases, Kunitz-type protease inhibitors, phospholipases A(2), (L)-amino acid oxidases, C-type lectin(-like) proteins, disintegrins, vascular endothelial growth factors, three-finger toxins, and cysteine-rich secretory proteins. Although the molecular structures of most toxins are not unique to snake venom toxins, venom proteins often exhibit marked diversity in their biological effects, despite their structural similarities. In this review, we identify several snake venom toxins capable of affecting blood coagulation and the vascular system, as well as various toxins from other organisms, including leeches and ticks.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Sistema Cardiovascular/efeitos dos fármacos , Venenos de Serpentes/química , Sequência de Aminoácidos , Animais , Coagulação Sanguínea/fisiologia , Sistema Cardiovascular/metabolismo , Humanos , Dados de Sequência Molecular , Venenos de Serpentes/genética , Venenos de Serpentes/farmacologia , Relação Estrutura-Atividade
18.
J Biol Chem ; 282(36): 25993-6001, 2007 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-17616532

RESUMO

Podoplanin (aggrus), a transmembrane sialoglycoprotein, is involved in tumor cell-induced platelet aggregation, tumor metastasis, and lymphatic vessel formation. However, the mechanism by which podoplanin induces these cellular processes including its receptor has not been elucidated to date. Podoplanin induced platelet aggregation with a long lag phase, which is dependent upon Src and phospholipase Cgamma2 activation. However, it does not bind to glycoprotein VI. This mode of platelet activation was reminiscent of the snake toxin rhodocytin, the receptor of which has been identified by us as a novel platelet activation receptor, C-type lectin-like receptor 2 (CLEC-2) (Suzuki-Inoue, K., Fuller, G. L., Garcia, A., Eble, J. A., Pohlmann, S., Inoue, O., Gartner, T. K., Hughan, S. C., Pearce, A. C., Laing, G. D., Theakston, R. D., Schweighoffer, E., Zitzmann, N., Morita, T., Tybulewicz, V. L., Ozaki, Y., and Watson, S. P. (2006) Blood 107, 542-549). Therefore, we sought to evaluate whether CLEC-2 serves as a physiological counterpart for podoplanin. Association between CLEC-2 and podoplanin was confirmed by flow cytometry. Furthermore, their association was dependent on sialic acid on O-glycans of podoplanin. Recombinant CLEC-2 inhibited platelet aggregation induced by podoplanin-expressing tumor cells or lymphatic endothelial cells, suggesting that CLEC-2 is responsible for platelet aggregation induced by endogenously expressed podoplanin on the cell surfaces. These findings suggest that CLEC-2 is a physiological target protein of podoplanin and imply that it is involved in podoplanin-induced platelet aggregation, tumor metastasis, and other cellular responses related to podoplanin.


Assuntos
Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Neoplasias/metabolismo , Agregação Plaquetária , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Células Endoteliais/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Glicoproteínas de Membrana/farmacologia , Camundongos , Camundongos Transgênicos , Ácido N-Acetilneuramínico/metabolismo , Metástase Neoplásica , Fosfolipase C gama/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Polissacarídeos/metabolismo , Proteínas Recombinantes , Venenos de Víboras/metabolismo , Venenos de Víboras/farmacologia , Quinases da Família src/metabolismo
19.
Biochem Biophys Res Commun ; 355(3): 693-9, 2007 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-17320821

RESUMO

VEGF165 is a key regulator of angiogenesis and a potent vascular permeability factor. Using snake venom proteins as tools, we demonstrate the enhanced vascular leakage of VEGF by KDR-binding proteins. The snake venom-derived KDR-specific VEGF, vammin, potently enhanced vascular leakage compared with other known permeability-enhancing factors including VEGF165, while KDR-bp from snake venom, a KDR antagonist of endothelial cell growth was a very weak permeability enhancer. Unexpectedly when co-administrated, KDR-bp synergistically enhanced either vammin or VEGF165-stimulated vascular leakage, despite its antagonistic effect on cell growth. This augmenting effect was specifically observed in the combined administration of KDR-bp with either VEGF165 or vammin, but not other combination of known permeability-enhancing factors. We further demonstrated a similar increased vascular leakage by the combined administration of VEGF165 and TIMP-3, the only known endogenous antagonist of KDR. Our findings implicate TIMP-3 as a critical player in the vascular leakage-enhancing effect of VEGF165 in vivo.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Fosfolipases A/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Venenos de Víboras/farmacologia , Animais , Sinergismo Farmacológico , Fosfolipases A2 do Grupo II , Cobaias , Fosfolipases A/antagonistas & inibidores , Proteínas de Répteis , Inibidor Tecidual de Metaloproteinase-3/farmacologia , Venenos de Víboras/antagonistas & inibidores
20.
Mol Divers ; 10(4): 515-27, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16972015

RESUMO

Members of the vascular endothelial growth factor (VEGF) family are crucial regulators of neovascularization and are classified as cystine knot growth factors that specifically bind cellular receptor tyrosine kinases VEGFR-1, VEGFR-2, and VEGFR-3 with high but variable affinity and selectivity. The VEGF family has recently been expanded and currently comprises seven members: VEGF-A, VEGF-B, placenta growth factor (PlGF), VEGF-C, VEGF-D, viral VEGF (also known as VEGF-E), and snake venom VEGF (also known as VEGF-F). Although all members are structurally homologous, there is molecular diversity among the subtypes, and several isoforms, such as VEGF-A, VEGF-B, and PlGF, are generated by alternative exon splicing. These splicing isoforms exhibit differing properties, particularly in binding to co-receptor neuropilins and heparin. VEGF family proteins play multiple physiological roles, such as angiogenesis and lymphangiogenesis, while exogenous members (viral and snake venom VEGFs) display activities that are unique in physiology and function. This review will highlight the molecular and functional diversity of VEGF family proteins.


Assuntos
Variação Genética , Fatores de Crescimento do Endotélio Vascular/genética , Fatores de Crescimento do Endotélio Vascular/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Venenos de Serpentes/química , Venenos de Serpentes/genética , Fatores de Crescimento do Endotélio Vascular/química , Fatores de Crescimento do Endotélio Vascular/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA