Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
F1000Res ; 5: 2740, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28163897

RESUMO

BACKGROUND: Co-expression networks are a tool widely used for analysis of "Big Data" in biology that can range from transcriptomes to proteomes, metabolomes and more recently even microbiomes. Several methods were proposed to answer biological questions interrogating these networks. Differential co-expression analysis is a recent approach that measures how gene interactions change when a biological system transitions from one state to another. Although the importance of differentially co-expressed genes to identify dysregulated pathways has been noted, their role in gene regulation is not well studied. Herein we investigated differentially co-expressed genes in a relatively simple mono-causal process (B lymphocyte deficiency) and in a complex multi-causal system (cervical cancer). METHODS: Co-expression networks of B cell deficiency (Control and BcKO) were reconstructed using Pearson correlation coefficient for two mus musculus datasets: B10.A strain (12 normal, 12 BcKO) and BALB/c strain (10 normal, 10 BcKO). Co-expression networks of cervical cancer (normal and cancer) were reconstructed using local partial correlation method for five datasets (total of 64 normal, 148 cancer). Differentially correlated pairs were identified along with the location of their genes in BcKO and in cancer networks. Minimum Shortest Path and Bi-partite Betweenness Centrality where statistically evaluated for differentially co-expressed genes in corresponding networks.    Results: We show that in B cell deficiency the differentially co-expressed genes are highly enriched with immunoglobulin genes (causal genes). In cancer we found that differentially co-expressed genes act as "bottlenecks" rather than causal drivers with most flows that come from the key driver genes to the peripheral genes passing through differentially co-expressed genes. Using in vitro knockdown experiments for two out of 14 differentially co-expressed genes found in cervical cancer (FGFR2 and CACYBP), we showed that they play regulatory roles in cancer cell growth. CONCLUSION: Identifying differentially co-expressed genes in co-expression networks is an important tool in detecting regulatory genes involved in alterations of phenotype.

2.
Bioinform Biol Insights ; 9: 61-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25983554

RESUMO

Omics technologies enable unbiased investigation of biological systems through massively parallel sequence acquisition or molecular measurements, bringing the life sciences into the era of Big Data. A central challenge posed by such omics datasets is how to transform these data into biological knowledge, for example, how to use these data to answer questions such as: Which functional pathways are involved in cell differentiation? Which genes should we target to stop cancer? Network analysis is a powerful and general approach to solve this problem consisting of two fundamental stages, network reconstruction, and network interrogation. Here we provide an overview of network analysis including a step-by-step guide on how to perform and use this approach to investigate a biological question. In this guide, we also include the software packages that we and others employ for each of the steps of a network analysis workflow.

3.
Nat Commun ; 4: 1806, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23651994

RESUMO

Although human papillomavirus was identified as an aetiological factor in cervical cancer, the key human gene drivers of this disease remain unknown. Here we apply an unbiased approach integrating gene expression and chromosomal aberration data. In an independent group of patients, we reconstruct and validate a gene regulatory meta-network, and identify cell cycle and antiviral genes that constitute two major subnetworks upregulated in tumour samples. These genes are located within the same regions as chromosomal amplifications, most frequently on 3q. We propose a model in which selected chromosomal gains drive activation of antiviral genes contributing to episomal virus elimination, which synergizes with cell cycle dysregulation. These findings may help to explain the paradox of episomal human papillomavirus decline in women with invasive cancer who were previously unable to clear the virus.


Assuntos
Antivirais/metabolismo , Ciclo Celular/genética , Redes Reguladoras de Genes/genética , Genes Neoplásicos/genética , Papillomaviridae/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/virologia , Aberrações Cromossômicas , Cromossomos Humanos/genética , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Instabilidade Genômica , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Metanálise como Assunto , Proteínas de Neoplasias/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Reprodutibilidade dos Testes , Neoplasias do Colo do Útero/patologia , Integração Viral/genética
4.
BMC Bioinformatics ; 12: 286, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21756334

RESUMO

BACKGROUND: DAPfinder and DAPview are novel BRB-ArrayTools plug-ins to construct gene coexpression networks and identify significant differences in pairwise gene-gene coexpression between two phenotypes. RESULTS: Each significant difference in gene-gene association represents a Differentially Associated Pair (DAP). Our tools include several choices of filtering methods, gene-gene association metrics, statistical testing methods and multiple comparison adjustments. Network results are easily displayed in Cytoscape. Analyses of glioma experiments and microarray simulations demonstrate the utility of these tools. CONCLUSIONS: DAPfinder is a new friendly-user tool for reconstruction and comparison of biological networks.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioma/genética , Software , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
5.
Hum Mol Genet ; 17(12): 1838-44, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18337305

RESUMO

Cervical cancer is a complex disease with multiple environmental and genetic determinants. In this study, we sought an association between polymorphisms in immune response genes and cervical cancer using both single-locus and multi-locus analysis approaches. A total of 14 single nucleotide polymorphisms (SNPs) distributed in CD28, CTLA4, ICOS, PDCD1, FAS, TNFA, IL6, IFNG, TGFB1 and IL10 genes were determined in patients and healthy individuals from three independent case/control sets. The first two sets comprised White individuals (one group with 82 cases and 85 controls, the other with 83 cases and 85 controls) and the third was constituted by non-white individuals (64 cases and 75 controls). The multi-locus analysis revealed higher frequencies in cancer patients of three three-genotype combinations [CD28+17(TT)/IFNG+874(AA)/TNFA-308(GG), CD28+17(TT)/IFN+847(AA)/PDCD1+7785(CT), and CD28 +17(TT)/IFNG+874(AA)/ICOS+1564(TT)] (P < 0.01, Monte Carlo simulation). We hypothesized that this two-genotype [CD28(TT) and IFNG(AA)] combination could have a major contribution to the observed association. To address this question, we analyzed the frequency of the CD28(TT), IFNG(AA) genotype combination in the three groups combined, and observed its increase in patients (P = 0.0011 by Fisher's exact test). The contribution of a third polymorphism did not reach statistical significance (P = 0.1). Further analysis suggested that gene-gene interaction between CD28 and IFNG might contribute to susceptibility to cervical cancer. Our results showed an epistatic effect between CD28 and IFNG genes in susceptibility to cervical cancer, a finding that might be relevant for a better understanding of the disease pathogenesis. In addition, the novel analytical approach herein proposed might be useful for increasing the statistical power of future genome-wide multi-locus studies.


Assuntos
Antígenos CD28/genética , Carcinoma de Células Escamosas/genética , Epistasia Genética , Predisposição Genética para Doença , Interferon gama/genética , Neoplasias do Colo do Útero/genética , Brasil , Estudos de Casos e Controles , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA