Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2402759, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704681

RESUMO

Soft on-skin electrodes play an important role in wearable technologies, requiring attributes such as wearing comfort, high conductivity, and gas permeability. However, conventional fabrication methods often compromise simplicity, cost-effectiveness, or mechanical resilience. In this study, a mechanically robust and gas-permeable on-skin electrode is presented that incorporates Flash Graphene (FG) integrated with a bioinspired armor design. FG, synthesized through Flash Joule Heating process, offers a small-sized and turbostratic arrangement that is ideal for the assembly of a conductive network with nanopore structures. Screen-printing is used to embed the FG assembly into the framework of polypropylene melt-blown nonwoven fabrics (PPMF), forming a soft on-skin electrode with low sheet resistance (125.2 ± 4.7 Ω/□) and high gas permeability (≈10.08 mg cm⁻2 h⁻¹). The "armor" framework ensures enduring mechanical stability through adhesion, washability, and 10,000 cycles of mechanical contact friction tests. Demonstrating capabilities in electrocardiogram (ECG) and electromyogram (EMG) monitoring, along with serving as a self-powered triboelectric sensor, the FG/PPMF electrode holds promise for scalable, high-performance flexible sensing applications, thereby enriching the landscape of integrated wearable technologies.

2.
J Hazard Mater ; 423(Pt A): 127104, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34523482

RESUMO

Soils contamination with Cd result in detriment to the environmental quality. In-situ immobilization methods by applying clay minerals have been gaining prominence. The effects on sepiolite of thermal activation at different temperatures (300-750 °C), for removing Cd from aqueous solutions were evaluated, in order to consider their further application for soil remediation. The influence of activation temperature was investigated using XRD, SEM, and N2 adsorption-desorption measurements. The S-600 exhibited the maximum adsorption capacity (21.28 mg/g), despite its lower SSA, and Langmuir model described the adsorption isotherms better than the Freundlich equation. TCLP was used to quantify the remediation effects of thermal-activated sepiolite on simulated soils artificially polluted with Cd. The results indicated that the mobility of Cd in soil was effectively reduced after treating with thermal-activated sepiolite and the use of S-600 was the most efficient, reducing the TCLP-Cd by approximately 73% compared with the control test. The main remediation mechanism was considered as the cation exchange of Cd by Mg at the edges of octahedral sheet. This study showed that thermal-activated sepiolite could be promising amendments for remediation of Cd-contaminated soil.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Adsorção , Cádmio/análise , Silicatos de Magnésio , Solo , Poluentes do Solo/análise
3.
RSC Adv ; 10(45): 26813-26823, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35515759

RESUMO

Polypropylene-based cerium wet catalytic materials (Ce/PPNW-g-PAA) were prepared through ultraviolet grafting and ion exchange technology. They were used as effective and reusable heterogeneous catalysts for rhodamine B (RhB) degradation. The physicochemical properties of Ce/PPNW-g-PAA were characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), specific surface area measurements (BET), and X-ray photoelectron spectroscopy (XPS). The catalytic capacity of the Ce/PPNW-g-PAA-H2O2 system for the removal of RhB was tested in comparison with several other systems, which demonstrated that Ce/PPNW-g-PAA effectively promoted the oxidation and degradation of RhB by catalytic wet H2O2 oxidation. The results of the RhB degradation showed that Ce/PPNW-g-PAA exhibited excellent degradation performance by achieving a high removal rate for RhB (97.5%) at an initial RhB concentration of 100 mg L-1, H2O2 dosage of 5.0 mmol, Ce/PPNW-g-PAA dosage of 0.15 g L-1, and initial pH of 5.0 at 298 K. The degradation of RhB by Ce/PPNW-g-PAA conformed to the first-order kinetic reaction model. Consecutive experiments performed with the Ce/PPNW-g-PAA sample showed little activity decay, further confirming the high stability of the catalyst. In addition, the possible degradation mechanism of RhB was also investigated by XPS and electron paramagnetic resonance. The results suggested that Ce3+ and hydroxyl radical played important roles during the RhB degradation process.

4.
J Nanosci Nanotechnol ; 15(9): 7385-90, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26716341

RESUMO

The quality of the clays and over all halloysite are mostly associated with minor amounts of ferruginous impurities content, since this element gives an undesirable reddish color to the halloysite mineral. Hence, finding out the modes of occurrence of iron in halloysite is of prime importance in the value addition and optimum utilization of halloysite. In order to analyze the occurrence of iron impurities in halloysite, Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were combined with wet chemical analysis methods to study the low-grade halloysite. The results indicated that the mineral phases of iron impurities in the concentrates are mainly composed of amounts of magnetite, goethite and hematite. Two types of occurrences for iron impurities have been found. One is single crystalline mineral consist in the halloysite, which contains three different phases of Goethite FeO(OH) (44.75%), Magnetite Fe3O4 (27.43%) and Hematite Fe2O3 (31.96%). The other is amorphous Fe-Al-Si glial materials. This study is of significance in the theoretical research on the halloysite mineralogy and in the developmental practice of halloysite in coal measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA