Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Foods ; 13(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38890897

RESUMO

The aim of this study was to optimize the formation of sodium caseinate (CS) and gum arabic (GA) complexes through the Maillard reaction and to evaluate their effectiveness in improving the emulsification properties and stability of docosahexaenoic acid (DHA) nanoemulsions. First, the best target polysaccharides were selected, and the best modification conditions were determined using orthogonal experiments. Secondly, the response surface experiments were used to optimize the preparation process of the emulsion. The stability, in vitro digestion characteristics, and rheological characteristics of the emulsion prepared by means of CS-GA were compared with the emulsion prepared using a whey protein isolate (WPI). After the orthogonal test, the optimal modification conditions were determined to be a reaction time of 96 h, a CS-GA mass ratio of 1:2, a reaction temperature of 60 °C, and a degree of grafting of 44.91%. Changes in the infrared (IR), Raman, ultraviolet (UV), and endogenous fluorescence spectra also indicated that the complex structure was modified. The response surface test identified the optimal preparation process as follows: an emulsifier concentration of 5 g/L, an oil-phase concentration of 5 g/L, and a homogenization frequency of five, and the emulsion showed good stability. Therefore, the use of a nanoemulsion as a nanoscale DHA algal oil delivery system is very promising for extending the shelf life and improving the stability of food.

2.
Epileptic Disord ; 26(3): 341-349, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38752894

RESUMO

OBJECTIVE: DEPDC5 emerges to play a vital role in focal epilepsy. However, genotype-phenotype correlation in DEPDC5-related focal epilepsies is challenging and controversial. In this study, we aim to investigate the genotypic and phenotypic features in DEPDC5-affected patients. METHODS: Genetic testing combined with criteria published by the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP), was used to identify pathogenic/likely pathogenic variants in DEPDC5 among the cohort of 479 patients with focal epilepsy. Besides, the literature review was performed to explore the genotype-phenotype correlation and the penetrance in DEPDC5-related focal epilepsies. RESULTS: Eight unrelated probands were revealed to carry different pathogenic/likely pathogenic variants in DEPDC5 and the total prevalence of DEPDC5-related focal epilepsy was 1.67% in the cohort. Sixty-five variants from 28 studies were included in our review. Combined with the cases reported, null variants accounted for a larger proportion than missense variants and were related to unfavorable prognosis (drug resistance or even sudden unexpected death in epilepsy; χ2 = 5.429, p = .020). And, the prognosis of probands with developmental delay/intellectual disability or focal cortical dysplasia was worse than that of probands with simple epilepsy (χ2 = -, p = .006). Besides, the overall penetrance of variants in DEPDC5 was 68.96% (231/335). SIGNIFICANCE: The study expands the variant spectrum of DEPDC5 and proves that the DEPDC5 variant plays a significant role in focal epilepsy. Due to the characteristics of phenotypic heterogeneity and incomplete penetrance, genetic testing is necessary despite no specific family history. And we propose to adopt the ACMG/AMP criteria refined by ClinGen Sequence Variant Interpretation Working Group, for consistency in usage and transparency in classification rationale. Moreover, we reveal an important message to clinicians that the prognosis of DEPDC5-affected patients is related to the variant type and complications.


Assuntos
Epilepsias Parciais , Proteínas Ativadoras de GTPase , Estudos de Associação Genética , Fenótipo , Humanos , Proteínas Ativadoras de GTPase/genética , Epilepsias Parciais/genética , Epilepsias Parciais/fisiopatologia , Masculino , Feminino , Criança , Estudos de Coortes , Pré-Escolar , Adulto , Adolescente , Genótipo , Penetrância , Adulto Jovem , Epilepsia/genética , Epilepsia/fisiopatologia
3.
Langmuir ; 40(15): 8133-8143, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38568837

RESUMO

Aluminum (Al) alloy surfaces are prone to serious corrosion in humid and salt-laden environments, which promotes the development of numerous protective approaches. Although the amorphous state is more conducive to improve corrosion resistance compared with the crystalline state, it still faces coating design problems like insufficient adhesive strength and flaking-off tendency. Here, we propose a strategy of femtosecond laser-assisted oxygen-rich doping to in situ create a dense high-quality passivation layer on Al alloy surfaces. With respect to the femtosecond laser processing in traditional air ambience, the material surface modifications within the oxygen-rich environment demonstrate some distinctiveness. For the ridge area of the laser ablation grooves, the oxidation surface is separated into two layers: the outer region presents a loose and porous appearance similar to the observations in the air ambience, while the inner region exhibits complete and homogeneous oxidation, especially associated with the continuous distribution of the amorphous substance, in sharp contrast to the nanoscale discrete amorphous formation in the air case. Simultaneously, the high degree of material oxidization with the amorphous phase is also developed on the wallside area of the groove valleys, which is much different from the incomplete oxidation in the air ambience. As a result, the measured corrosion current decreases by 49 times to a value of Icorr = 1.19 × 10-10 A/cm2 relative to the laser treatment in the air environment. Such a method offers the prospect for elevating the anticorrosion performance of metal surfaces.

4.
BMC Anesthesiol ; 23(1): 404, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062380

RESUMO

BACKGROUND: Prolonged length of stay in post-anesthesia care unit (PLOS in PACU) is a combination of risk factors and complications that can compromise quality of care and operating room efficiency. Our study aimed to develop a nomogram to predict PLOS in PACU of patients undergoing elective surgery. METHODS: Data from 24017 patients were collected. Least absolute shrinkage and selection operator (LASSO) was used to screen variables. A logistic regression model was built on variables determined by a combined method of forward selection and backward elimination. Nomogram was designed with the model. The nomogram performance was evaluated with the area under the receiver operating characteristic curve (AUC) for discrimination, calibration plot for consistency between predictions and actuality, and decision curve analysis (DCA) for clinical application value. RESULTS: A nomogram was established based on the selected ten variables, including age, BMI < 21 kg/m2, American society of Anesthesiologists Physical Status (ASA), surgery type, chill, delirium, pain, naloxone, operation duration and blood transfusion. The C-index value was 0.773 [95% confidence interval (CI) = 0.765 - 0.781] in the development set and 0.757 (95% CI = 0.744-0.770) in the validation set. The AUC was > 0.75 for the prediction of PLOS in PACU. The calibration curves revealed high consistencies between the predicted and actual probability. The DCA showed that if the threshold probability is over 10% , using the models to predict PLOS in PACU and implement intervention adds more benefit. CONCLUSIONS: This study presented a nomogram to facilitate individualized prediction of PLOS in PACU for patients undergoing elective surgery.


Assuntos
Anestesia , Nomogramas , Humanos , Tempo de Internação , Procedimentos Cirúrgicos Eletivos , Modelos Logísticos
5.
Nutr J ; 22(1): 31, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37370090

RESUMO

AIM: To explore the genetic effects of CYP2C8, CYP2C9, CYP2J2, and EPHX2, the key genes involved in epoxyeicosatrienoic acid processing and degradation pathways in gestational diabetes mellitus (GDM) and metabolic traits in Chinese pregnant women. METHODS: A total of 2548 unrelated pregnant women were included, of which 938 had GDM and 1610 were considered as controls. Common variants were genotyped using the Infinium Asian Screening Array. Association studies of single nucleotide polymorphisms (SNPs) with GDM and related traits were performed using logistic regression and multivariable linear regression analyses. A genetic risk score (GRS) model based on 12 independent target SNPs associated with GDM was constructed. Logistic regression was used to estimate odds ratios and 95% confidence intervals, adjusting for potential confounders including age, pre-pregnancy body mass index, history of polycystic ovarian syndrome, history of GDM, and family history of diabetes, with GRS entered both as a continuous variable and categorized groups. The relationship between GRS and quantitative traits was also evaluated. RESULTS: The 12 SNPs in CYP2C8, CYP2C9, CYP2J2, and EPHX2 were significantly associated with GDM after adjusting for covariates (all P < 0.05). The GRS generated from these SNPs significantly correlated with GDM. Furthermore, a significant interaction between CYP2J2 and CYP2C8 in GDM (PInteraction = 0.014, ORInteraction= 0.61, 95%CI 0.41-0.90) was observed. CONCLUSION: We found significant associations between GDM susceptibility and 12 SNPs of the four genes involved in epoxyeicosatrienoic acid processing and degradation pathways in a Chinese population. Subjects with a higher GRS showed higher GDM susceptibility with higher fasting plasma glucose and area under the curve of glucose and poorer ß-cell function.


Assuntos
Diabetes Gestacional , Gravidez , Feminino , Humanos , Diabetes Gestacional/genética , Diabetes Gestacional/epidemiologia , Citocromo P-450 CYP2C8/genética , Predisposição Genética para Doença , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2J2 , Polimorfismo de Nucleotídeo Único
6.
J Digit Imaging ; 36(4): 1597-1607, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36932252

RESUMO

Breast cancer is the leading cause of cancer-related mortality in women worldwide. Despite the rapid developments in diagnostic techniques and medical sciences, pathologic diagnosis is still recognized as the gold standard for disease diagnose. Pathologic diagnosis is a time-consuming task performed for pathologists, needing profound professional knowledge and long-term accumulated diagnostic experience. Therefore, the development of automatic and precise histopathological image classification is essential for medical diagnosis. In this study, an improved VGG network was used to classify the breast cancer histopathological image from intraoperative rapid frozen sections. We adopt a transformed loss function by adding a penalty to cross-entropy in our training stage, which improved the accuracy on test data by 4.39%. Laplacian-4 was used for the enhancement of images, which contributes to the improvement of the accuracy. The accuracy of the proposed model on training data and test data reached 88.70% and 82.27%, respectively, which outperforms the original model by 9.39% of accuracy in test data. The process time was less than 0.25 s per image on average. Meanwhile, the heat maps of predictions were given to show the evidential regions in histopathological images, which could drive improvements in the accuracy, speed, and clinical value of pathological diagnoses. In addition to helping with the actual diagnosis, this technology may be a benefit to pathologists, surgeons, and patients. It might prove to be a helpful tool for pathologists in the future.


Assuntos
Neoplasias da Mama , Medicina , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Secções Congeladas/métodos , Redes Neurais de Computação , Patologistas
7.
Cancers (Basel) ; 14(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36497289

RESUMO

(1) Background: Early diagnosis and treatment are essential to reduce the mortality rate of bladder cancer (BLCA). We aimed to develop deep learning (DL)-based weakly supervised models for the diagnosis of BLCA and prediction of overall survival (OS) in muscle-invasive bladder cancer (MIBC) patients using whole slide digitized histological images (WSIs). (2) Methods: Diagnostic and prognostic models were developed using 926 WSIs of 412 BLCA patients from The Cancer Genome Atlas cohort. We collected 250 WSIs of 150 BLCA patients from the Renmin Hospital of Wuhan University cohort for external validation of the models. Two DL models were developed: a BLCA diagnostic model (named BlcaMIL) and an MIBC prognostic model (named MibcMLP). (3) Results: The BlcaMIL model identified BLCA with accuracy 0.987 in the external validation set, comparable to that of expert uropathologists and outperforming a junior pathologist. The C-index values for the MibcMLP model on the internal and external validation sets were 0.631 and 0.622, respectively. The risk score predicted by MibcMLP was a strong predictor independent of existing clinical or histopathologic indicators, as demonstrated by univariate Cox (HR = 2.390, p < 0.0001) and multivariate Cox (HR = 2.414, p < 0.0001) analyses. The interpretability of DL models can help in the analysis of critical regions associated with tumors to enrich the information obtained from WSIs. Furthermore, the expression of six genes (ANAPC7, MAPKAPK5, COX19, LINC01106, AL161431.1 and MYO16-AS1) was significantly associated with MibcMLP-predicted risk scores, revealing possible potential biological correlations. (4) Conclusions: Our study developed DL models for accurately diagnosing BLCA and predicting OS in MIBC patients, which will help promote the precise pathological diagnosis of BLCA and risk stratification of MIBC to improve clinical treatment decisions.

8.
BMC Cancer ; 22(1): 1082, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271354

RESUMO

BACKGROUND: The tumour-stroma ratio (TSR) is identified as a promising prognostic parameter for breast cancer, but the cutoff TSR value is mostly assessed by visual assessment, which lacks objective measurement. The aims of this study were to optimize the cutoff TSR value, and evaluate its prognosis value in patients with breast cancer both as continuous and categorical variables. METHODS: Major clinicopathological and follow-up data were collected for a series of patients with breast cancer. Tissue microarray images stained with cytokeratin immunohistochemistry were evaluated by automated quantitative image analysis algorithms to assess TSR. The potential cutoff point for TSR was optimized using maximally selected rank statistics. The association between TSR and 5-year disease-free survival (5-DFS) was assessed by Cox regression analysis. Kaplan-Meier analysis and log-rank test were used to assess the significance in survival analysis. RESULTS: The optimal cut-off TSR value was 33.5%. Using this cut-off point, categorical variable analysis found that low TSR (i.e., high stroma, TSR ≤ 33.5%) predicts poor outcomes for 5-DFS (hazard ratio [HR] = 2.82, 95% confidence interval [CI] = 1.81-4.40, P = 0.000). When TSR was considered as a continuous parameter, results showed that increased stroma content was associated with worse 5-DFS (HR = 1.71, 95% CI = 1.34-2.18, P = 0.000). Similar results were also obtained in three molecular subtypes in continuous and categorical variable analyses. Moreover, in the Kaplan-Meier analysis, log-rank test showed that low TSR displayed a worse 5-DFS than high TSR (P = 0.000). Similar results were also obtained in patients with triple-negative breast cancer, human epidermal growth factor receptor 2 (HER2)-positive breast cancer, and luminal-HER2-negative breast cancer. CONCLUSION: TSR is an independent predictor for 5-DFS in breast cancer with worse survival outcomes in low TSR. The prognostic value of TSR was also observed in other three molecular subtypes.


Assuntos
Células Estromais , Neoplasias de Mama Triplo Negativas , Humanos , Intervalo Livre de Doença , Células Estromais/patologia , Prognóstico , Neoplasias de Mama Triplo Negativas/patologia , Queratinas
9.
Cell Death Dis ; 13(10): 904, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302749

RESUMO

Islet ß cell dysfunction and insulin resistance are the main pathogenesis of type 2 diabetes (T2D), but the mechanism remains unclear. Here we identify a rs3819316 C > T mutation in lncRNA Reg1cp mainly expressed in islets associated with an increased risk of T2D. Analyses in 16,113 Chinese adults reveal that Mut-Reg1cp individuals had higher incidence of T2D and presented impaired insulin secretion as well as increased insulin resistance. Mice with islet ß cell specific Mut-Reg1cp knock-in have more severe ß cell dysfunction and insulin resistance. Mass spectrometry assay of proteins after RNA pulldown demonstrate that Mut-Reg1cp directly binds to polypyrimidine tract binding protein 1 (PTBP1), further immunofluorescence staining, western blot analysis, qPCR analysis and glucose stimulated insulin secretion test reveal that Mut-Reg1cp disrupts the stabilization of insulin mRNA by inhibiting the phosphorylation of PTBP1 in ß cells. Furthermore, islet derived exosomes transfer Mut-Reg1cp into peripheral tissue, which then promote insulin resistance by inhibiting AdipoR1 translation and adiponectin signaling. Our findings identify a novel mutation in lncRNA involved in the pathogenesis of T2D, and reveal a new mechanism for the development of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células Secretoras de Insulina , Ilhotas Pancreáticas , RNA Longo não Codificante , Animais , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos
10.
Analyst ; 147(18): 3974-3992, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35959641

RESUMO

The detection of human-derived metabolites as potential diagnostic biomarkers of genetic disorders, metabolic diseases, systemic diseases, and infectious diseases has been much studied in recent years, especially as technical capabilities improve, and statistical procedures are increasingly able to tease critical chemical attributes from complex data sets. Given the complex distribution of human biological matrices, the characterization and/or identification of these chemical entities is technically challenging, and is often confounded by incomplete chromatographic resolution or insufficient discriminatory power of the mass spectrometry (MS) domain. Recently, comprehensive two-dimensional gas chromatography (GC×GC) has evolved into a mature higher separation order technique that offers unprecedented resolving power, which in turn can greatly advantage clinical metabolomics studies via the expansion of metabolite coverage. In this contribution, the current state of knowledge in the development of GC×GC coupled to MS as a high-resolution bioanalytical technique for the analysis of clinical metabolites is reviewed. Selected recent applications (years 2012 to 2021) that emphasize improved GC×GC-MS strategies for clinical human metabolites' detection, identification, and quantitative analysis are described. In addition, we share our perspectives on current challenges and potential future directions of GC×GC in clinical applications.


Assuntos
Metabolômica , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Metabolômica/métodos
11.
Neurochem Res ; 47(4): 1037-1048, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35037165

RESUMO

Curcumin is a natural polyphenolic compound with neuroprotective and antioxidant properties. Acrylamide (ACR) is a by-product of food processing that produces neurotoxicity in humans and animals. The pancreatic endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor-2α (eIF2α) signaling is involved in the occurrence of neurotoxicities. This study is aimed to investigate the protective effect of curcumin on ACR-induced cytotoxicity and explore the role of PERK-eIF2α signaling in this process. ACR exposure at 2.5 mM for 24 h caused oxidative stress as revealed by the distinct increase in cellular reactive oxygen species (ROS) and malondialdehyde (MDA) level, and a significant decrease in glutathione (GSH) content. ACR induced phosphorylated tau aggregation, phosphorylated cAMP response elements binding protein (CREB) reduction, and Bax/Bcl-2 ratio up-regulation in SH-SY5Y cells. ACR also activated the PERK-eIF2α signaling in SH-SY5Y cells and triggered the activation of glycogen synthase kinase-3ß (GSK-3ß), up-regulated activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). Curcumin pretreatment significantly attenuated ACR-induced neuronal toxicity as revealed by the ameliorated cell viability, mitigated intracellular ROS and MDA level, and elevated GSH content. Moreover, curcumin pretreatment inhibited PERK-dependent eIF2α phosphorylation, further suppressed GSK-3ß and ATF4 function, and abolished abnormal tau phosphorylation, P-CREB reduction, and CHOP-induced apoptosis in SH-SY5Y cells. These results provided empirical evidence between curcumin and PERK-eIF2α signaling in ACR-induced neurotoxicity.


Assuntos
Curcumina , Fator de Iniciação 2 em Eucariotos , Neuroblastoma , eIF-2 Quinase , Acrilamida/toxicidade , Animais , Apoptose , Linhagem Celular Tumoral , Curcumina/farmacologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Estresse Oxidativo , eIF-2 Quinase/metabolismo
12.
Oncol Lett ; 22(1): 548, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34093769

RESUMO

The treatment options for breast cancer include endocrine therapy, targeted therapy and chemotherapy. However, some patients with triple-negative breast cancer cannot benefit from these methods. Therefore, novel therapeutic targets should be developed. The cytochrome P450 enzyme (CYP) is a crucial metabolic oxidase, which is involved in the metabolism of endogenous and exogenous substances in the human body. Some products undergoing the metabolic pathway of the CYP enzyme, such as hydroxylated polychlorinated biphenyls and 4-chlorobiphenyl, are toxic to humans and are considered to be potential carcinogens. As a class of multi-gene superfamily enzymes, the subtypes of CYPs are selectively expressed in breast cancer tissues, especially in the basal-like type. In addition, CYPs are essential for the activation or inactivation of anticancer drugs. The association between CYP expression and cancer risk, tumorigenesis, progression, metastasis and prognosis has been widely reported in basic and clinical studies. The present review describes the current findings regarding the importance of exploring metabolic pathways of CYPs and gene polymorphisms for the development of vital therapeutic targets for breast cancer.

13.
Oxid Med Cell Longev ; 2021: 7647139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33680287

RESUMO

AIM: The main objective of this article was to evaluate the association of voltage-dependent anion channel 1 (VDAC1) with Cytochrome C (Cytc) expression, various clinicopathological features, and prognosis in breast cancer (BC) patients. Meanwhile, the correlation of Cytc expression with various clinical features and 5-year disease-free survival (5-DFS) of BC was also investigated. METHODS: In vivo, expression of VDAC1 and Cytc was examined in 219 BC tissues and 100 benign breast lesions by immunohistochemical (IHC) analysis. In vitro, MTT and wound healing migration assay were performed to detect the effect of VDAC1 on BC cells. RESULTS: Expression of VDAC1 is conversely associated with Cytc in BC (P = 0.011), especially in triple-negative breast cancer (TNBC) (P = 0.004). Knockdown of VDAC1 inhibited proliferation (P < 0.001) and migration (P < 0.05) of MCF-7 cells. High expression of VDAC1 and low expression of Cytc had a significant association with multiple clinicopathological parameters (P < 0.05) and poor 5-DFS (P < 0.001) in BC. CONCLUSION: VDAC1 was elevated in BC tissues and conversely associated with Cytc. Detection of VDAC1 may provide guidance for the poor prognosis of BC, especially TNBC.


Assuntos
Neoplasias da Mama/metabolismo , Citocromos c/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Proliferação de Células , Intervalo Livre de Doença , Feminino , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Células MCF-7 , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , Receptor ErbB-2/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
14.
Endocr Pract ; 27(4): 362-369, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33616040

RESUMO

OBJECTIVE: Radioiodine has been increasingly used to treat hyperthyroidism for many years. Although widely regarded as an effective therapy, radioiodine treatment for hyperthyroidism has been suspected to be associated with the risk of mortality. This study aimed to quantify the mortality outcomes in patients who were treated for hyperthyroidism with radioiodine. METHODS: Systematic search and meta-analysis were performed to determine the risk of mortality in patients treated with radioiodine for hyperthyroidism. Relevant studies were searched through August 2020 and selected in accordance with the inclusion criteria. RESULTS: A total of 13 studies were identified. The summary odds ratios (ORs) showed an increased risk of all-cause mortality in patients who were treated with radioiodine for hyperthyroidism (OR = 1.20; 95% CI = 1.07-1.35). The risk of death attributed to all forms of circulatory, respiratory, and endocrine and metabolic diseases was significantly increased, with summary ORs of 1.23 (95% CI, 1.12-1.35), 1.43 (95% CI, 1.17-1.75), and 2.38 (95% CI, 1.85-3.06), respectively. The summary ORs revealed no significant association between radioiodine treatment for hyperthyroidism and the risk of cancer mortality (OR = 1.03; 95% CI, 0.98-1.09). Radioiodine treatment for hyperthyroidism was not associated with the risk of mortality from breast, respiratory system, gastrointestinal, and genitourinary cancers. CONCLUSION: Radioiodine treatment for hyperthyroidism is associated with the risk of all-cause mortality but not cancer mortality. Future research needs to address the causes of hyperthyroidism, effects of radioiodine therapy, and potential effects of confounding to identify causality.


Assuntos
Hipertireoidismo , Radioisótopos do Iodo , Antitireóideos , Humanos , Hipertireoidismo/radioterapia , Radioisótopos do Iodo/efeitos adversos
15.
J Cancer ; 12(24): 7358-7373, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003356

RESUMO

Cisplatin (DDP) is the first-line chemotherapeutic agent for ovarian cancer. However, the development of DDP resistance seriously influences the chemotherapeutic effect and prognosis of ovarian cancer. It was reported that DDP can directly impinge on the mitochondria and activate the intrinsic apoptotic pathway. Herein, the role of mitochondrial dynamics in DDP chemoresistance in human ovarian cancer SKOV3 cells was investigated. In DDP-resistant SKOV3/DDP cells, mitochondrial fission protein DRP1 was down-regulated, while mitochondrial fusion protein MFN2 was up-regulated. In accordance with the expression of DRP1 and MFN2, the average mitochondrial length was significantly increased in SKOV3/DDP cells. In DDP-sensitive parental SKOV3 cells, downregulation of DRP1 and upregulation of mitochondrial fusion proteins including MFN1,2 and OPA1 occurred at day 2~6 under cisplatin stress. Knockdown of DRP1 or overexpression of MFN2 promoted the resistance of SKOV3 cells to cisplatin. Intriguingly, weaker migration capability and lower ATP level were detected in SKOV3/DDP cells. Respective knockdown of DRP1 in parental SKOV3 cells or MFN2 in SKOV3/DDP cells using siRNA efficiently reversed mitochondrial dynamics, migration capability and ATP level. Moreover, MFN2 siRNA significantly aggravated the DDP-induced ROS production, mitochondrial membrane potential disruption, expression of pro-apoptotic protein BAX and Cleaved Caspase-3/9 in SKOV3/DDP cells. In contrast, DRP1 siRNA alleviated DDP-induced ROS production, mitochondrial membrane potential disruption, expression of pro-apoptotic protein BAX and Cleaved Caspase-3/9 in SKOV3 cells. Thus, these results indicate that mitochondrial dynamics mediated by DRP1 and MFN2 contributes to the development of DDP resistance in ovarian cancer cells, and will also provide a new strategy to prevent chemoresistance in ovarian cancer by targeting mitochondrial dynamics.

16.
Front Pediatr ; 9: 816265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35223715

RESUMO

BACKGROUND: The serine active site-containing protein 1 (SERAC1) biallelic variant usually causes MEGDEL syndrome, clinically characterized by increased excretion of 3-methylglutaconic in the urine, muscle hypotonia, sensorineural deafness, and Leigh-like lesions on brain MRI scans. In this study, we present a case from a Chinese family with disordered metabolism and dystonia owing to SERAC1 variants; the clinical phenotypes of the proband were different from those of MEGDEL syndrome but were similar to those juvenile-onset complicated hereditary spastic paraplegia. Thus, in this study, we aimed to confirm the relationship between SERAC1 variants and complicated hereditary spastic paraplegia. METHODS: MRI and laboratory tests, including gas chromatography/mass spectrometry (GC/MS), were carried out for the proband. Whole-exome sequencing was used to detect the candidate SERAC1 variants. Variants were verified using Sanger sequencing. Various software programs (PolyPhen-2, MutationTaster, PROVEAN, and SIFT) were used to predict the pathogenicity of novel variants. RESULTS: Brain MRI scans showed a symmetric flake abnormal signal shadow in the bilateral basal ganglia in T2-weighted image (T2WI) and fluid-attenuated inversion recovery (FLAIR) analyses. The excretion of 3-methylglutaconic acid was found to be increased in our GC/MS analysis. Whole-exome sequencing showed novel compound heterozygous variants, including a novel c.1495A>G (p.Met499Val) variant in exon 14 of SERAC1 inherited from the father and a novel c.721_722delAG (p.Leu242fs) variant in exon 8 inherited from the mother. The pathogenicity prediction results showed that these two variants were deleterious. CONCLUSIONS: This study presented a patient with complicated hereditary spastic paraplegia caused by SERAC1 variants. These findings expand the number of known SERAC1 variants and the phenotypic spectrum associated with SERAC1 deficiency. This study may contribute to counseling and prevention of hereditary diseases through prenatal.

17.
Front Oncol ; 10: 1379, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850442

RESUMO

Background: The susceptibility of breast cancer is largely affected by the metabolic capacity of breast tissue. This ability depends in part on the expression profile of cytochrome P450 (CYPs). CYPs are a superfamily of enzymes with related catalysis to endogenous and exogenous bioactive substances, including xenobiotic metabolism, drugs, and some endogenous substances metabolism which activate cells and stimulate cell signaling pathways, such as arachidonic acid metabolism, steroid metabolism, fatty acid metabolism. Interestingly, CYP was electively expressed in different tumors, and mediated the metabolic activation of multiple carcinogens and participated in the activation and deactivation of tumor therapeutic drugs. However, the biological action of cytochrome P450 2U1 (CYP2U1) in breast carcinoma is little understood so far. Methods: To investigate the biological value of CYP2U1 in breast carcinoma, we performed immunohistochemical (IHC) analysis and survival analysis based on clinico-pathological data of breast cancer. Results: IHC analysis showed that the abundance of CYP2U1 protein was inversely proportional to the state of estrogen receptor(ER) (P < 0.05), and the lower the degree of tumor differentiation, the higher the protein abundance (P < 0.001). Additionally, compared with luminal tumors, the CYP2U1 protein content was more abundant in triple negative breast cancer (P < 0.05). Importantly, survival analysis showed that higher CYP2U1 protein levels predicted poor 5-year overall survival rate (P < 0.01), 5-year disease-free survival rate (P < 0.05), and 5-year metastatic-free survival rate (P < 0.01) for the entire enrolled breast cancer patients. Conclusions: CYP2U1 is generally closely related to the clinicopathological characteristics and is also an adverse prognostic factor for breast carcinoma patients, indicating that CYP2U1 is engaged in the malignant progression of breast carcinoma.

18.
Dalton Trans ; 49(29): 10084-10090, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32661533

RESUMO

Organic metal halide perovskite (OMHP) material shows promising applications in the photoelectrocatalytic field, but its efficiencies are unsatisfactory due to the bulk and surface carrier recombination. In this work, we used dual polyoxometalates (C4H9N)3PW12O40 and [Ag10[{Co(H2O)3}2{CoBi2W19O66(OH)4}] to modify the OMHP photoanode; the former acted to improve the quality of the perovskite film and the latter could facilitate hole transfer. Such dual modifications effectively reduce carrier recombination and thus obviously boost photoelectrocatalytic efficiency. Hence, we explored the photoelectrocatalytic oxidation of benzene into phenol in aqueous solution by using the modified OMHP photoanode. The yield of phenol in the reaction using the modified OMHP photoanode reached about 31.8%, which was obviously superior to that using the pure OMHP photoanode. Furthermore, we carried out radical scavenger studies to investigate the active species involved in the photoelectrocatalytic benzene oxidation reaction, and thus proposed the plausible mechanism of the photoelectrocatalytic oxidation of benzene into phenol over the OMHP photoanode. These results provide new insights into the development of high performance OMHP photoanodes for photoelectrocatalytic organic transformation.

19.
J Environ Sci (China) ; 91: 160-167, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32172964

RESUMO

Cadmium (Cd) uptake by plants or benthic organisms largely depends on its bioavailability in sediments, so it is necessary to understand Cd bioavailability for determining its ecological risks in riverine sediments. Pore water is easily disturbed during sample collection, indicating that there was a shortage of traditional methods for investigating Cd bioavailability. Here, sediment cores were collected from rivers, after which sequential extraction and diffusive gradients in thin films (DGT) method were employed to determine Cd potential bioavailability in the sediments and pore water. We found that Cd concentrations measured by DGT were lower than that in pore water profiles, and Cd distribution in various fractions changed remarkably. Pearson correlation analysis showed significant positive correlations between Cd concentrations measured by DGT and total Cd concentrations (r2 = 0.76), exchangeable and weak acid soluble fraction (r2 = 0.68), ferromanganese fraction (r2 = 0.72) and bound organic matter or oxidizable fraction (r2 = 0.54). However, the correlation was relatively low between Cd concentrations measured by DGT and that in pore water profiles (r2 = 0.26). These results demonstrated that DGT method could provide more accurate information of Cd bioavailability in sediment profiles than traditional methods.


Assuntos
Cádmio , Poluentes Químicos da Água/análise , Disponibilidade Biológica , Monitoramento Ambiental , Sedimentos Geológicos
20.
Front Oncol ; 10: 589009, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469513

RESUMO

The inhibitor of growth (ING) family was discovered as the type II tumor suppressors, which regulated the proliferation, apoptosis, differentiation, angiogenesis, metastasis, and invasion of tumor cells through multiple pathways. ING3, a new member of ING family, has been reported to be downregulated in several types of tumors. However, few studies on ING3 in breast cancer have been reported. In this study, we investigated the expression of ING3 and determined its prognostic value in breast cancer. The immunohistochemistry was performed to evaluate the expression of ING3 in tissue microarrays (TMA) including breast cancer tissues (n=211) and normal breast tissues (n=50). In normal breast tissues, ING3 protein was detected in both the cytoplasm and nucleus. In breast cancer tissues, ING3 protein was principally detected in the cytoplasm. Compared with normal breast tissues, the expression of ING3 in nucleus was remarkably reduced in breast cancer tissues. The downregulated ING3 in nucleus was significantly correlated with clinicopathological characteristics including histological grade, lymph node metastasis, and the status of ER and PR. In HER2 positive-type and triple-negative breast cancer (TNBC) patients, it had the lower rate of nuclear ING3 with high expression than that in luminal-type. Moreover, Kaplan-Meier curves demonstrated that the reduced expression of ING3 in nucleus was correlated with a poorer 5-DFS and 5-OS of breast cancer patients. Importantly, multivariate Cox regression analysis suggested that the reduced expression of ING3 in nucleus was an independent prognostic factor in breast cancer. Our study comprehensively described the expression of ING3 in breast cancer for the first time and proved that it was an independent prognostic predictor of breast cancer, as well as a new idea for study of breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA