Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 25(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39456830

RESUMO

Aberrant DNA methylation plays a crucial role in breast cancer progression by regulating gene expression. However, the regulatory pattern of DNA methylation in long noncoding RNAs (lncRNAs) for breast cancer remains unclear. In this study, we integrated gene expression, DNA methylation, and clinical data from breast cancer patients included in The Cancer Genome Atlas (TCGA) database. We examined DNA methylation distribution across various lncRNA categories, revealing distinct methylation characteristics. Through genome-wide correlation analysis, we identified the CpG sites located in lncRNAs and the distally associated CpG sites of lncRNAs. Functional genome enrichment analysis, conducted through the integration of ENCODE ChIP-seq data, revealed that differentially methylated CpG sites (DMCs) in lncRNAs were mostly located in promoter regions, while distally associated DMCs primarily acted on enhancer regions. By integrating Hi-C data, we found that DMCs in enhancer and promoter regions were closely associated with the changes in three-dimensional chromatin structures by affecting the formation of enhancer-promoter loops. Furthermore, through Cox regression analysis and three machine learning models, we identified 11 key methylation-driven lncRNAs (DIO3OS, ELOVL2-AS1, MIAT, LINC00536, C9orf163, AC105398.1, LINC02178, MILIP, HID1-AS1, KCNH1-IT1, and TMEM220-AS1) that were associated with the survival of breast cancer patients and constructed a prognostic risk scoring model, which demonstrated strong prognostic performance. These findings enhance our understanding of DNA methylation's role in lncRNA regulation in breast cancer and provide potential biomarkers for diagnosis.


Assuntos
Neoplasias da Mama , Cromatina , Ilhas de CpG , Metilação de DNA , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Regiões Promotoras Genéticas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Ilhas de CpG/genética , Cromatina/genética , Cromatina/metabolismo , Prognóstico , Biomarcadores Tumorais/genética
2.
Invest Ophthalmol Vis Sci ; 65(6): 29, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888282

RESUMO

Purpose: Ubiquitination serves as a fundamental post-translational modification in numerous cellular events. Yet, its role in regulating corneal epithelial wound healing (CEWH) remains elusive. This study endeavored to determine the function and mechanism of ubiquitination in CEWH. Methods: Western blot and immunoprecipitation were used to discern ubiquitination alterations during CEWH in mice. Interventions, including neuronally expressed developmentally downregulated 4 (Nedd4) siRNA and proteasome/lysosome inhibitor, assessed their impact on CEWH. In vitro analyses, such as the scratch wound assay, MTS assay, and EdU staining, were conducted to gauge cell migration and proliferation in human corneal epithelial cells (HCECs). Moreover, transfection of miR-30/200 coupled with a luciferase activity assay ascertained their regulatory mechanism on Nedd4. Results: Global ubiquitination levels were markedly increased during the mouse CEWH. Importantly, the application of either proteasomal or lysosomal inhibitors notably impeded the healing process both in vivo and in vitro. Furthermore, Nedd4 was identified as an essential E3 ligase for CEWH. Nedd4 expression was significantly upregulated during CEWH. In vivo studies revealed that downregulation of Nedd4 substantially delayed CEWH, whereas further investigations underscored its role in regulating cell proliferation and migration, through the Stat3 pathway by targeting phosphatase and tensin homolog (PTEN). Notably, our findings pinpointed miR-30/200 family members as direct regulators of Nedd4. Conclusions: Ubiquitination holds pivotal significance in orchestrating CEWH. The critical E3 ligase Nedd4, under the regulatory purview of miR-30 and miR-200, facilitates CEWH through PTEN-mediated Stat3 signaling. This revelation sheds light on a prospective therapeutic target within the realm of CEWH.


Assuntos
Movimento Celular , Proliferação de Células , Epitélio Corneano , Ubiquitina-Proteína Ligases Nedd4 , PTEN Fosfo-Hidrolase , Ubiquitina-Proteína Ligases , Ubiquitinação , Cicatrização , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Animais , Camundongos , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Cicatrização/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Epitélio Corneano/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Humanos , Camundongos Endogâmicos C57BL , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Western Blotting , Fator de Transcrição STAT3/metabolismo , Células Cultivadas , Modelos Animais de Doenças , MicroRNAs/genética , Imunoprecipitação , Masculino , Regulação da Expressão Gênica/fisiologia
3.
Sci Rep ; 14(1): 6568, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503887

RESUMO

While Phorbol-12-myristate-13-acetate-induced protein 1 (Noxa/PMAIP1) assumes a pivotal role in numerous tumors, its clinical implications and underlying mechanisms of gastric cancer (GC) are yet enigmatic. In this investigation, our primary objective was to scrutinize the clinical relevance and potential mechanisms of Noxa in gastric cancer. Immunohistochemical analysis was conducted on tissue microarrays comprising samples from a meticulously characterized cohort of 84 gastric cancer patients, accompanied by follow-up data, to assess the expression of Noxa. Additionally, Noxa expression levels in gastric cancer clinical samples and cell lines were measured through quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. The effect of Noxa expression on the prognosis of patients with gastric cancer was evaluated using Kaplan-Meier survival. Further insight into the role of Noxa in driving gastric cancer progression was gained through an array of experimental techniques, including cell viability assays (CCK8), plate cloning assays, transwell assays, scratch assays, and real-time cell analysis (RTCA). Potential upstream microRNAs (miRNAs) that might modulate Noxa were identified through rigorous bioinformatics analysis, substantiated by luciferase reporter assays and Western blot experiments. Additionally, we utilized RNA sequencing, qRT-PCR, and Western blot to identify proteins binding to Noxa and potential downstream target. Finally, we utilized BALB/c nude mice to explore the role of Noxa in vivo. Our investigation unveiled a marked downregulation of Noxa expression in gastric cancer and underscored its significance as a pivotal prognostic factor influencing overall survival (OS). Noxa overexpression exerted a substantial inhibitory effect on the proliferation, migration and invasion of GC cells. Bioinformatic analysis and dual luciferase reporter assays unveiled the capacity of hsa-miR-200b-3p to interact with the 3'-UTR of Noxa mRNA, thereby orchestrating a downregulation of Noxa expression in vitro, consequently promoting tumor progression in GC. Our transcriptome analysis, coupled with mechanistic validation, elucidated a role for Noxa in modulating the expression of ZNF519 in the Mitophagy-animal pathway. The depletion of ZNF519 effectively reversed the oncogenic attributes induced by Noxa. Upregulation of Noxa expression suppressed the tumorigenesis of GC in vivo. The current investigation sheds light on the pivotal role of the hsa-miR-200b-3p/Noxa/ZNF519 axis in elucidating the pathogenesis of gastric cancer, offering a promising avenue for targeted therapeutic interventions in the management of this challenging malignancy.


Assuntos
MicroRNAs , Neoplasias Gástricas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Luciferases/metabolismo , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/patologia
4.
Transl Vis Sci Technol ; 13(2): 4, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315480

RESUMO

Purpose: Epigenetic mechanisms orchestrate a harmonious process of corneal epithelial wound healing (CEWH). However, the precise role of long non-coding RNAs (lncRNAs) as key epigenetic regulators in mediating CEWH remains elusive. Here, we aimed to elucidate the functional contribution of lncRNAs in regulating CEWH. Methods: We used a microarray to characterize lncRNA expression profiling during mouse CEWH. Subsequently, the aberrant lncRNAs and their cis-associated genes were subjected to comprehensive Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and western blot analyses were performed to determine the expression profiles of key markers during CEWH. The in vivo effects of linc17500 on this process were investigated through targeted small interfering RNA (siRNA) injection. Post-siRNA treatment, corneal re-epithelialization was assessed, alongside the expression of cytokeratins 12 and 14 (Krt12 and Krt14) and Ki67. Effects of linc17500 on mouse corneal epithelial cell (TKE2) proliferation, cell cycle, and migration were assessed by multicellular tumor spheroids (MTS), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and scratch-wound assay, respectively. Results: Microarray analysis revealed dysregulation of numerous lncRNA candidates during CEWH. Bioinformatic analysis provided valuable annotations regarding the cis-associated genes of these lncRNAs. In vivo experiments demonstrated that knockdown of linc17500 resulted in delayed CEWH. Furthermore, the knockdown of linc17500 and its cis-associated gene, CDC28 protein kinase regulatory subunit 2 (Cks2), was found to impede TKE2 cell proliferation and migration. Notably, downregulation of linc17500 in TKE2 cells led to suppression of the activation status of Akt and Rb. Conclusions: This study sheds light on the significant involvement of lncRNAs in mediating CEWH and highlights the regulatory role of linc17500 on TKE2 cell behavior. Translational Relevance: These findings provide valuable insights for future therapeutic research aimed at addressing corneal wound complications.


Assuntos
RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno , Células Epiteliais/metabolismo , Cicatrização/genética
5.
Comput Biol Med ; 169: 107884, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154158

RESUMO

Overall cancer hypomethylation had been identified in the past, but it is not clear exactly which hypomethylation site is the more important for the occurrence of cancer. To identify key hypomethylation sites, we studied the effect of hypomethylation in twelve regions on gene expression in colon adenocarcinoma (COAD). The key DNA methylation sites of cg18949415, cg22193385 and important genes of C6orf223, KRT7 were found by constructing a prognostic model, survival analysis and random combination prediction a series of in-depth systematic calculations and analyses, and the results were validated by GEO database, immune microenvironment, drug and functional enrichment analysis. Based on the expression values of C6orf223, KRT7 genes and the DNA methylation values of cg18949415, cg22193385 sites, the least diversity increment algorithm were used to predict COAD and normal sample. The 100 % reliability and 97.12 % correctness of predicting tumor samples were obtained in jackknife test. Moreover, we found that C6orf223 gene, cg18949415 site play a more important role than KRT7 gene, cg22193385 site in COAD. In addition, we investigate the impact of key methylation sites on three-dimensional chromatin structure. Our results will be help for experimental studies and may be an epigenetic biomarker for COAD.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Metilação de DNA , Reprodutibilidade dos Testes , Biomarcadores , Microambiente Tumoral
6.
FASEB J ; 36(9): e22473, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35976172

RESUMO

Although the role of serine racemase (SR) in neuropsychiatric disorders has been extensively studied, its role in cell proliferation and differentiation remains unclear. Deletion of Srr, the encoding gene for SR, has been shown to reduce dendritic arborization and dendritic spine density in the brains of adult mice, whereas increased SR levels have been associated with differentiation in cell cultures. Previously, we demonstrated that valproic acid induces differentiation in the N2A neuroblastoma cell line, and that this differentiation is associated with increased SR expression. These observations suggest that SR may have a role in cell proliferation and differentiation. We herein found that both valproic acid and all-trans retinoic acid induced N2A differentiation. In contrast, knockdown of SR reduced levels of differentiation, increased N2A proliferation, promoted cell cycle entry, and modulated expression of cell cycle-related proteins. To further evaluate the effects of SR expression on cell proliferation and differentiation, we used an in vivo model of neuroblastoma in nude mice. N2A cells stably expressing scramble shRNA (Srrwt -N2A) or specific Srr shRNA (Srrkd -N2A) were subcutaneously injected into nude mice. The weights and volumes of Srrwt -N2A-derived tumors were lower than Srrkd -N2A-derived tumors. Furthermore, Srrwt -N2A-derived tumors were significantly mitigated by intraperitoneal injection of valproic acid, whereas Srrkd -N2A-derived tumors were unaffected. Taken together, our findings demonstrate for the first time that alterations in SR expression determine the transition between proliferation and differentiation in neural progenitor cells. Thus, in addition to its well-established roles in neuropsychiatric disorders, our study has highlighted a novel role for SR in cell proliferation and differentiation.


Assuntos
Neuroblastoma , Ácido Valproico , Animais , Diferenciação Celular , Proliferação de Células , Camundongos , Camundongos Nus , Neuroblastoma/genética , Neuroblastoma/metabolismo , RNA Interferente Pequeno/genética , Racemases e Epimerases , Serina , Ácido Valproico/farmacologia
7.
Epigenetics ; 17(8): 922-933, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35757999

RESUMO

RNA 5-methylcytosine (m5C) is a widespread post-transcriptional modification involved in diverse biological processes through controlling RNA metabolism. However, its roles in uveal melanoma (UM) remain unknown. Here, we describe the biological roles and regulatory mechanisms of RNA m5C in UM. Initially, we identified significantly elevated global RNA m5C levels in both UM cells and tissue specimens using ELISA assay and dot blot analysis. Meanwhile, NOP2/Sun RNA methyltransferase family member 2 (NSUN2) was upregulated in both types of these samples, whereas NSUN2 knockdown significantly decreased RNA m5C level. Such declines inhibited UM cell migration and suppressed cell proliferation through cell cycle G1 arrest. Furthermore, bioinformatic analyses, m5C-RIP-qPCR, and luciferase assay identified ß-Catenin (CTNNB1) as a direct target of NSUN2-mediated m5C modification in UM cells. Additionally, overexpression of miR-124a in UM cells diminished NSUN2 expression levels indicating that it is an upstream regulator of this response. Our study suggests that NSUN2-mediated RNA m5C methylation provides a potential novel target to improve the therapeutic management of UM pathogenesis.


Assuntos
RNA , Neoplasias Uveais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Metilação de DNA , Humanos , Melanoma , Metiltransferases/genética , RNA/metabolismo , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia
8.
J Gastroenterol Hepatol ; 37(6): 1107-1118, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35434854

RESUMO

BACKGROUND AND AIM: Colorectal cancer (CRC), the third most lethal human cancer worldwide, seriously threatens human health and life. Numerous circular RNAs (circRNAs) including circ_PLXNB1 (hsa_circ_0065378) have been confirmed to be dysregulated in CRC by RNA-seq analysis. We aimed to explore the functional role of circ_PLXNB1 in CRC malignant behaviors and clarify its potential molecular mechanism. METHODS: Gene expression levels of circ_PLXNB1 and miR-4701-5p were determined by quantitative real-time polymerase chain reaction analysis. MTT and Transwell assays were conducted to measure cell proliferation, invasion, and migration. Protein expression of tumor suppressor candidate 1 (TUSC1), E-cadherin and N-cadherin was determined by western blot analysis. Mouse xenograft models were used to investigate the role of circ_PLXNB1 in tumor growth. RESULTS: The results showed that gene expression of circ_PLXNB1 in CRC tissues was significantly downregulated. Overexpression of circ_PLXNB1 inhibited the malignant behaviors of CRC cells, as manifested by the decrease in cell proliferation, cell invasion, migration, and EMT. Mechanistically, circ_PLXNB1 exerted its functional effects by binding with miR-4701-5p. Moreover, TUSC1 siRNA partially abolished the suppressive effect of the miR-4701-5p inhibitor or circ_PLXNB1 on CRC cell malignant behaviors. CONCLUSIONS: Circ_PLXNB1 attenuated CRC progression by binding with miR-4701-5p to overexpress TUSC1, indicating that the circ_PLXNB1/miR-4701-5p/TUSC1 axis might be a potential novel molecular target in CRC diagnosis and therapy.


Assuntos
Neoplasias Colorretais , MicroRNAs/metabolismo , Proteínas Supressoras de Tumor , Animais , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Humanos , Camundongos , Proteínas do Tecido Nervoso , RNA Circular/genética , Receptores de Superfície Celular , Proteínas Supressoras de Tumor/genética
9.
Nat Commun ; 11(1): 4928, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004791

RESUMO

High-altitude adaptation of Tibetans represents a remarkable case of natural selection during recent human evolution. Previous genome-wide scans found many non-coding variants under selection, suggesting a pressing need to understand the functional role of non-coding regulatory elements (REs). Here, we generate time courses of paired ATAC-seq and RNA-seq data on cultured HUVECs under hypoxic and normoxic conditions. We further develop a variant interpretation methodology (vPECA) to identify active selected REs (ASREs) and associated regulatory network. We discover three causal SNPs of EPAS1, the key adaptive gene for Tibetans. These SNPs decrease the accessibility of ASREs with weakened binding strength of relevant TFs, and cooperatively down-regulate EPAS1 expression. We further construct the downstream network of EPAS1, elucidating its roles in hypoxic response and angiogenesis. Collectively, we provide a systematic approach to interpret phenotype-associated noncoding variants in proper cell types and relevant dynamic conditions, to model their impact on gene regulation.


Assuntos
Aclimatação/genética , Cromatina/metabolismo , Etnicidade/genética , Redes Reguladoras de Genes , Modelos Genéticos , Altitude , Doença da Altitude/etnologia , Doença da Altitude/genética , Doença da Altitude/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular/genética , Células Cultivadas , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Resistência à Doença/genética , Feminino , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Oxigênio/metabolismo , Polimorfismo de Nucleotídeo Único , Gravidez , Cultura Primária de Células , RNA-Seq , Elementos Reguladores de Transcrição/genética , Seleção Genética , Tibet/etnologia , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma
10.
J Cell Physiol ; 235(10): 7107-7119, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32017066

RESUMO

N6 -methyladenosine (m6 A) is a novel epitranscriptomic marker that contributes to regulating diverse biological processes through controlling messenger RNA metabolism. However, it is unknown if m6 A RNA methylation affects uveal melanoma (UM) development. To address this question, we probed its function and molecular mechanism in UM. Initially, we demonstrated that global RNA m6 A methylation levels were dramatically elevated in both UM cell lines and clinical specimens. Meanwhile, we found that METTL3, a main m6 A regulatory enzyme, was significantly increased in UM cells and specimens. Subsequently, cycloleucine (Cyc) or METTL3 targeted small interfering RNA was used to block m6 A methylation in UM cells. We found that Cyc or silencing METTL3 significantly suppressed UM cell proliferation and colony formation through cell cycle G1 arrest, as well as migration and invasion by functional analysis. On the other hand, overexpression of METTL3 had the opposite effects. Furthermore, bioinformatics and methylated RNA immunoprecipitation-quantitative polymerase chain reaction identified c-Met as a direct target of m6 A methylation in UM cells. In addition, western blot analysis showed that Cyc or knockdown of METTL3 downregulated c-Met, p-Akt, and cell cycle-related protein levels in UM cells. Taken together, our results demonstrate that METTL3-mediated m6 A RNA methylation modulates UM cell proliferation, migration, and invasion by targeting c-Met. Such a modification acts as a critical oncogenic regulator in UM development.


Assuntos
Melanoma/genética , Proteínas Proto-Oncogênicas c-met/genética , RNA Neoplásico/genética , Neoplasias Uveais/genética , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Epigênese Genética , Técnicas de Silenciamento de Genes , Humanos , Melanoma/metabolismo , Melanoma/patologia , Metilação , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Metiltransferases/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo , Regulação para Cima , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia
11.
J Cell Physiol ; 235(1): 105-113, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31347173

RESUMO

The biological function of long noncoding RNA NEAT1 has been revealed in a lot of diseases. Nevertheless, it is still not yet clear whether NEAT1 can modulate the process of myocardial ischemia-reperfusion injury (M-I/R). Here, we reported that NEAT1 was able to sponge miR-495-3p to contribute to M-I/R injury through activating mitogen-activated protein kinase 6 (MAPK6). First, elevated expression of NEAT1 was revealed in M-I/R injury mice, meanwhile, lactate dehydrogenase (LDH) and creatine kinase-muscle/brain (CK-MB) were also upregulated in the serum. Meanwhile, as previously reported, miR-495 serves as a tumor suppressor or an oncogenic miRNA in different types of cancer. Currently, we found miR-495-3p was remarkably reduced in M-I/R mice. Additionally, NEAT1 was significantly induced whereas miR-495-3p was greatly reduced by H2 O2 treatment in H9C2 cells. Moreover, loss of NEAT1 in H9C2 cells could repress the viability and proliferation of cells. For another, overexpression of NEAT1 exhibited an opposite phenomenon. Furthermore, LDH release and caspase-3 activity were obviously triggered by upregulation of NEAT1 while suppressed by NEAT1 knockdown. miR-495-3p was indicated and validated as a target of NEAT1 using the analysis of bioinformatics. Interestingly, we observed that miR-495-3p mimics repressed tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-18 protein expression while their levels were enhanced by the inhibition of miR-495-3p in H9c2 cells. Subsequently, it was manifested that MAPK6 was a target of miR-495-3p, which could exert a lot in the NEAT1/miR-495-3p-mediated M-I/R injury. Overall, our results implied that NEAT1 contributed to M-I/R injury via the modulation of miR-495-3p and MAPK6.


Assuntos
MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Peróxido de Hidrogênio/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , RNA Longo não Codificante/genética
12.
Clin Exp Pharmacol Physiol ; 47(3): 503-516, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31788833

RESUMO

Colorectal cancer (CRC), a leading cause of cancer death, has recently been known as the most prevalent malignancy worldwide. Although chemotherapy is an important therapeutic option for CRC patients, multidrug resistance (MDR) still remains a major cause of chemotherapy failure. Transmembrane protein 45A (TMEM45A) has been found highly expressed in various cancers, and is also proposed as an interesting biomarker for chemoresistance. However, the association between TMEM45A and MDR in CRC remains unclear. This study aimed to investigate the key role of TMEM45A in CRC by knockdown of its expression in 5-FU-resistant CRC cells (HCT-8/5-FU and SW480/5-FU) and their parental cells (HCT-8 and SW480). Data showed that TMEM45A was significantly up-regulated in HCT-8/5-FU and SW480/5-FU cells in comparison with their parental HCT-8 and SW480 cells. Knockdown of TMEM45A enhanced 5-FU sensitivity and 5-FU-induced apoptosis in HCT-8/5-FU and SW480/5-FU cells. It was also found that inhibition of TMEM45A increased the intracellular accumulation of Rhodamine-123 and down-regulated the expression of MDR1 in HCT-8/5-FU and SW480/5-FU cells. In addition, knockdown of TMEM45A suppressed migration and invasion of HCT-8/5-FU and SW480/5-FU cells. Furthermore, knockdown of TMEM45A not only attenuated MDR-enhanced epithelial-mesenchymal transition (EMT), but also suppressed MDR-enhanced activation of the TGF-ß signalling pathway in HCT-8/5-FU and SW480/5-FU cells. Taken together, our study suggests that knockdown of TMEM45A can effectively overcome MDR and inhibit EMT via suppression of the TGF-ß signalling pathway in human CRC cells, and that targeting TMEM45A will be a potential strategy in the treatment of MDR in CRC.


Assuntos
Neoplasias Colorretais/metabolismo , Resistência a Múltiplos Medicamentos/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Proteínas de Membrana/deficiência , Fator de Crescimento Transformador beta/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Relação Dose-Resposta a Droga , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fluoruracila/farmacologia , Técnicas de Silenciamento de Genes/métodos , Humanos , Proteínas de Membrana/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/antagonistas & inibidores
13.
J Cell Physiol ; 234(12): 22648-22656, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31183860

RESUMO

Growing evidence indicates long noncoding RNAs (lncRNAs) are significant regulators in the progression of various malignant tumors including colon cancer. Dysregulation of lncRNA LINC00261 has been identified in many cancers. Investigations on LINC00261 function have revealed that LINC00261 could act as a crucial tumor suppressor in various cancers. But, the biological involvement of LINC00261 in colon cancer is still barely known. Here, we found LINC00261 was reduced in colon cancer cells. Meanwhile, overexpressed LINC00261 repressed colon cancer cell viability and proliferation capacity. In addition, colony cancer cell colony formation was inhibited and apoptosis was enhanced by upregulation of LINC00261. Also, colon cancer cell migration and invasion both were restrained by LINC00261. miR-324-3p can exert important functions in several carcinomas, but its role in colon cancer is uninvestigated. In the current study, miR-324-3p was examined and miR-324-3p was greatly increased in colon cancer cells. Moreover, the association between miR-324-3p and LINC00261 was confirmed via performing RNA immunoprecipitation and RNA-pull-down experiments. In cancer biology, aberrant modulation of the Wnt signaling pathway remains a prevalent theme. Overexpression of LINC00261 obviously impaired colon cancer progression via inactivating the Wnt pathway. Furthermore, in the xenograft model assay, an increase of LINC00261 could suppress colon tumor growth via sponging miR-324-3p and inactivating the Wnt pathway. Overall, our results showed that LINC00261 repressed colon cancer progression via regulating miR-324-3p and the Wnt pathway. LINC00261 could be established as a novel therapeutic target for colon cancer.


Assuntos
Neoplasias Colorretais/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Via de Sinalização Wnt , Animais , Apoptose , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , RNA Longo não Codificante/genética , Carga Tumoral
14.
Cancer Manag Res ; 11: 4729-4742, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31213897

RESUMO

Purpose: Uveal melanoma (UM) is the most frequent metastatic ocular tumor in adults. Therapeutic intervention remains ineffective since none of the novel procedures used to treat this disease increased survival rates. To deal with this limitation, additional studies are required to clarify its pathogenesis. The current study focused on describing how epigenetic modulation by miR-142-3p affects changes in some cellular functions underlying UM pathogenesis. Methods and results: Microarray analysis identified 374 miRNAs which were differentially expressed between UM cells and uveal melanocytes. miR-142-3p was one of the 10 most downregulated miRNAs. Quantitative RT-PCR analysis confirmed that miR-142-3p expression levels were significantly decreased in both UM cell lines and clinical specimens. The results of the MTS, clone formation, scratch wound, transwell assays, and in vivo biofluorescence imaging showed that miR-142-3p overexpression significantly inhibited cell proliferation, migration, and invasiveness. Nevertheless, miR-142-3p did not affect cell apoptotic activity or sensitivity to doxorubicin. Cell cycle and EdU analysis showed that miR-142-3p overexpression induced G1/G2 cell cycle arrest and reduced DNA synthesis in UM cells. Microarray analysis showed that miR-142-3p mainly regulates the TGFß signaling pathway, and those in which MAPK and PI3K-Akt are constituents. Functional interactions between miR-142-3p and CDC25C, TGFßR1, GNAQ, WASL, and RAC1 target genes were confirmed based on the results of the luciferase reporter assay and Western blot analysis. CDC25C or RAC1 downregulation is in agreement with cell cycle arrest and DNA synthesis disorder induction, while downregulation of TGFßR1, GNAQ, WASL, or RAC1 accounts for declines in cell migration. Conclusion: miR-143-3p is a potential therapeutic target to treat UM since overriding its declines in expression that occur in this disease reversed the pathogenesis of this disease. Such insight reveals novel biomarker for decreasing UM vitality and for improved tracking of tumor progression.

15.
Invest Ophthalmol Vis Sci ; 59(13): 5431-5440, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452596

RESUMO

Purpose: Silent information regulator protein 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase that is abundantly expressed in vascular endothelial cells (VECs), and it has an essential role in angiogenesis. However, its contribution to retinal vascular development remains unclear. Here we characterize its involvement in regulating this process under both physiological and pathologic conditions. Methods: Endothelium-specific Sirt1 knockout mice were established using the Cre-lox system. VECs were isolated using magnetic beads and identified by immunostaining. Retinal whole-mount staining analyzed the retinal vascular patterns. SIRT1 was knocked down or overexpressed in human retinal microvascular endothelial cells (HRMECs) using small interfering RNA (siRNA) or lentivirus infection, respectively. Scratch assay, Transwell, and Matrigel angiogenesis assay evaluated cell migration and tube formation, respectively. Quantitative RT-PCR analyzed genes regulating VEC migration. Western blotting determined protein expression. Coimmunoprecipitation detected the interaction of hypoxia-inducible factor 1α (HIF-1α) and SIRT1 as well as acetylation status of HIF-1α. Results: Specific deletion of Sirt1 in VECs dramatically delayed retinal vessel expansion and reduced vessel density. In the oxygen-induced retinopathy (OIR) mouse model, Sirt1 ablation markedly suppressed retinal revascularization and consequently increased retinal avascularity. SIRT1 downregulation in HRMECs inhibited cell migration and tube formation, while overexpression of SIRT1 had the opposite effects. Vascular endothelial growth factor-A (VEGF-A)/VEGF receptor-2 (VEGFR-2), and matrix metalloproteinases 14 (MMP14) expression significantly declined in Sirt1-null VECs, as well as SIRT1 siRNA-transfected HRMECs. SIRT1 downregulation upregulated the HIF-1α acetylation status. Conversely, SIRT1 overexpression decreased this response. Conclusions: SIRT1 contributes to both physiological and pathologic retinal angiogenesis through promoting retinal VEC migration. Its underlying molecular mechanism involves SIRT1-mediated deacetylation of HIF-1α and subsequent upregulation of VEGF-A/VEGFR-2 and MMP14 expression.


Assuntos
Movimento Celular/fisiologia , Células Endoteliais/fisiologia , Metaloproteinase 14 da Matriz/metabolismo , Neovascularização Retiniana/prevenção & controle , Sirtuína 1/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Western Blotting , Regulação para Baixo , Feminino , Inativação Gênica/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Separação Imunomagnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Neovascularização Retiniana/metabolismo , Vasos Retinianos/citologia , Transfecção
16.
Chin J Nat Med ; 16(10): 766-773, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30322610

RESUMO

Several chemical compounds can restore pigmentation in vitiligo through mechanisms that vary according to disease etiology. In the present study, we investigated the melanogenic activity of six structurally distinct compounds, namely, scopoletin, kaempferol, chrysin, vitamin D3, piperine, and 6-benzylaminopurine. We determined their effectiveness, toxicity, and mechanism of action for stimulating pigmentation in B16F10 melanoma cells and in a zebrafish model. The melanogenic activity of 6-benzylaminopurine, the compound identified as the most potent, was further verified by measuring green fluorescent protein concentration in tyrp1 a: eGFP (tyrosinase-related protein 1) zebrafish and mitfa: eGFP (microphthalmia associated transcription factor) zebrafish and antioxidative activity. All the tested compounds were found to enhance melanogenesis responses both in vivo and in vitro at their respective optimal concentration by increasing melanin content and expression of TYR and MITF. 6-Benzyamino-purine showed the strongest re-pigmentation action at a concentration of 20 µmol·L-1in vivo and 100 µmol·L-1in vitro, and up-regulated the strong fluorescence expression of green fluorescent protein in tyrp1a: eGFP and mitfa: eGFP zebrafish in vitro. However, its relative anti-oxidative activity was found to be very low. Overall, our results indicated that 6-benzylaminopurine stimulated pigmentation through a direct mechanism, by increasing melanin content via positive regulation of tyrosinase activity in vitro, as well as up-regulating the expression of the green fluorescent protein in transgenic zebrafish in vivo.


Assuntos
Alcaloides/farmacologia , Benzodioxóis/farmacologia , Compostos de Benzil/farmacologia , Colecalciferol/farmacologia , Flavonoides/farmacologia , Quempferóis/farmacologia , Melaninas/metabolismo , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Purinas/farmacologia , Escopoletina/farmacologia , Vitiligo/metabolismo , Alcaloides/química , Animais , Benzodioxóis/química , Compostos de Benzil/química , Colecalciferol/química , Flavonoides/química , Humanos , Quempferóis/química , Melaninas/genética , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Pigmentação/efeitos dos fármacos , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Purinas/química , Escopoletina/química , Vitiligo/tratamento farmacológico , Vitiligo/enzimologia , Peixe-Zebra
17.
World J Surg Oncol ; 15(1): 135, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716043

RESUMO

BACKGROUND: Gastric cancer remains a formidable treatment challenge. For decades, treatment consisted mostly of surgical intervention for this deadly disease. With improvements in the multi-disciplinary management of solid organ malignancies, the approach to this disease is being stepwise refined. MAIN BODY: One of the prevalent controversies in the surgical management of gastric cancer rests on the need for adequate harvesting of lymph nodes. For decades, lymph node dissection is regarded as a staging technique useful in only upstaging the disease. The adoption of D2 lymphadenectomy has been particularly slow to mature. But with prevailing data from Asia consistently demonstrating a survival benefit from lymphadenectomy, it calls into question the notion of lymphadenectomy as being solely a staging procedure. CONCLUSIONS: As gastric resection techniques are being better defined in western countries and surgical morbidities lowered on its execution, D2 lymphadenectomy is becoming more accepted as the new standard in the management of gastric cancer.


Assuntos
Gastrectomia/métodos , Excisão de Linfonodo/métodos , Neoplasias Gástricas/cirurgia , Gerenciamento Clínico , Humanos , Resultado do Tratamento
18.
Clin Chim Acta ; 473: 237-244, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28698064

RESUMO

In this study, we investigated the differential expression of microRNAs in an ovarian cancer cell line HO-8910PM with increased migration and invasiveness activities. miR-1 was found to be one of the microRNA species most significantly downregulated in HO-8910PM compared with the control cell line HO-8910. We demonstrated that ovarian cancer tissues expressed decreased levels of miR-1 compared to non-neoplastic tissues. In vitro experiments showed that overexpression of miR-1 in HO-8910PM led to an inhibition of cell proliferation, blocking of cell cycle progression by G1 phase arrest, and decreased migration and invasiveness of HO-8910PM cells. Moreover, we confirmed that the expression of c-Met, a potential target of miR-1, was significantly inhibited following overexpression of miR-1 in HO-8910PM cells. Further analyses indicated that expression of factors including p-Akt, p-ERK1/2, CDK4, and p-Rb in HO-8910PM cells were affected by manipulation of c-Met expression. Infection of HO-8910PM cells with lentivirus vector expressing miR-1 led to a significant inhibition of tumor growth in the tumor subcutaneous nude mouse model. Taken together, these results indicated that miR-1 is downregulated in ovarian cancer tissues, and may play a tumor suppressive role by inhibiting c-Met expression and its effects on the regulation of cell proliferation, migration and invasion.


Assuntos
Movimento Celular/genética , MicroRNAs/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-met/genética , Transdução de Sinais/genética , Adulto , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica
19.
PLoS One ; 11(12): e0167684, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936052

RESUMO

As increases in hepatocyte growth factor/scatter factor (HGF/SF) induce retinal pigment epithelial (RPE) migration and proliferation into the vitreous cavity and contribute to proliferative vitreoretinopathy (PVR) development, we determined if changes in miR-182 expression affect such behavioral changes. We found that miR-182 expression was less in PVR clinical samples than in primary RPE cells whereas c-Met was upregulated. Ectopic miR-182 inhibited RPE cell proliferation, cell cycle, and migration. Bioinformatic analysis identified c-Met as a miR-182 target, which was confirmed with the luciferase reporter assay. Transfection of miR-182 into RPE cells induced c-Met downregulation, which led to reduced cell proliferation and migration through declines in p-Akt formation. MiR-182 downregulation along with c-Met upregulation in PVR tissues suggest that these two opposing effects play important roles in PVR development. As ectopic miR-182 expression suppressed RPE cell proliferation and migration, strategies to selectively upregulate miR-182 expression in a clinical setting may provide a novel option to treat this disease.


Assuntos
Proliferação de Células , Regulação da Expressão Gênica , Fator de Crescimento de Hepatócito/metabolismo , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-met/genética , Epitélio Pigmentado da Retina/patologia , Vitreorretinopatia Proliferativa/genética , Adulto , Movimento Celular , Células Cultivadas , Regulação para Baixo , Humanos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Regulação para Cima , Vitreorretinopatia Proliferativa/metabolismo , Vitreorretinopatia Proliferativa/patologia
20.
PLoS One ; 10(7): e0128751, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186594

RESUMO

MicroRNAs are endogenous short chain nucleotide RNAs that regulate gene function by direct binding of target mRNAs. In this study, we investigated the effects of microRNA-206 (miR-206) on the development of gastric cancer. miR-206 was first confirmed to be downregulated in gastric cancer specimens. Conversely, upregulation of c-Met was confirmed in tissue samples of human gastric cancer, with its level inversely correlated with miR-206 expression. Introduction of miR-206 inhibited cellular proliferation by inducing G1 cell cycle arrest, as well as migration and invasion. Moreover, important proliferation and/or migration related molecules such as c-Met, CDK4, p-Rb, p-Akt and p-ERK were confirmed to be downregulated by Western blot analysis. Targeting of c-Met also directly affected AGS cell proliferation, migration and invasion. In vivo, miR-206 expressing tumor cells also displayed growth delay in comparison to unaffected tumor cells. Our results demonstrated that miR-206 suppressed c-Met expression in gastric cancer and could function as a potent tumor suppressor in c-Met overexpressing tumors. Inhibition of miR-206 function could contribute to aberrant cell proliferation and migration, leading to gastric cancer development.


Assuntos
Adenocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-met/genética , RNA Interferente Pequeno/genética , Neoplasias Gástricas/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Movimento Celular , Proliferação de Células , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Progressão da Doença , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA