Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Comp Immunol ; 156: 105159, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38492902

RESUMO

Stress-induced immunosuppression (SIIS) is one of the common problems in intensive poultry production, which brings enormous economic losses to the poultry industry. Accumulating evidence has shown that microRNAs (miRNAs) were important regulators of gene expression in the immune system. However, the miRNA-mediated molecular mechanisms underlying SIIS in chickens are still poorly understood. This study aimed to investigate the biological functions and regulatory mechanism of miRNAs in chicken SIIS. A stress-induced immunosuppression model was successfully established via daily injection of dexamethasone and analyzed miRNA expression in spleen. Seventy-four differentially expressed miRNAs (DEMs) was identified, and 229 target genes of the DEMs were predicted. Functional enrichment analysis the target genes revealed pathways related to immunity, such as MAPK signaling pathway and FoxO signaling pathway. The candidate miRNA, gga-miR-146a-5p, was found to be significantly downregulated in the Dex-induced chicken spleen, and we found that Dex stimulation significantly inhibited the expression of gga-miR-146a-5p in Chicken macrophages (HD11). Flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU), cell counting kit-8 (CCK-8) and other assays indicated that gga-miR-146a-5p can promote the proliferation and inhibit apoptosis of HD11 cells. A dual-luciferase reporter assay suggested that the Interleukin 1 receptor associated kinase 2 (IRAK2) gene, which encoded a transcriptional factor, was a direct target of gga-miR-146a-5p, gga-miR-146a-5p suppressed the post-transcriptional activity of IRAK2. These findings not only improve our understanding of the specific functions of miRNAs in avian stress but also provide potential targets for genetic improvement of stress resistance in poultry.


Assuntos
Galinhas , Dexametasona , Macrófagos , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Galinhas/imunologia , Galinhas/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Dexametasona/farmacologia , Apoptose , Tolerância Imunológica , Regulação da Expressão Gênica , Terapia de Imunossupressão , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Baço/imunologia , Baço/metabolismo , Transdução de Sinais , Estresse Fisiológico/imunologia , Linhagem Celular , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Proliferação de Células
2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37931159

RESUMO

In this study, the effects of Pseudostellaria heterophylla polysaccharide (PHP) on the growth, development, and liver metabolism of chicks were investigated by feeding chicks diets. Four hundred 7-d-old Gushi roosters were selected and randomly divided into four groups, labeled A, B, C, and D. Group A was fed the basal diet, and Groups B, C, and D were fed 100, 200, and 400 mg PHP per kilogram of basal diet, respectively. At 14, 21, 28 and 35 d of age, five chicks were randomly selected from each group to collect samples for index detection. The results showed that compared with Group A, there were significant reduction in average daily feed intake (ADFI) and feed-to-weight ratio (F/G) at 14, 21, and 28 d (P < 0.05), significant increase in average daily gain (ADG) at 21, 28 d (P < 0.05), significantly increased levels of total protein (TP), albumin (ALB), insulin (INS), thyroxine (T3), growth hormone (GH) at 14, 28 d (P < 0.05), significantly decreased levels of glucose (GLU), total cholesterol (TC), glucagon (GC), and triglyceride (TG) at 28 d in Group C (P < 0.05). There were significantly increased levels of TP, ALB at 14, 21 d (P < 0.05), significantly increased level of TP at 35 d (P < 0.05), significantly increased level of GH at 28 d (P < 0.05), significantly decreased levels of GLU, GC at 28 d (P < 0.05), significant reduction in F/G at 14, 21 d in Groups B and D (P < 0.05). Based on the above results, the livers from chicks in Groups A and C at 28 d were selected for transcriptome sequencing. The sequencing results showed that significantly differentially expressed genes (SDEGs) were enriched in growth and development, oxidative phosphorylation, the PPAR signaling pathway and the lipid metabolism pathway. All these results revealed that the addition of 200 mg/kg PHP in the diet promoted the growth and development, lipid metabolism and energy metabolism of chicks, inhibit inflammation and tumor development, and improve the function of the liver.


In order to explore the possibility of Pseudostellaria heterophylla polysaccharide (PHP) as green and healthy feed additive, we evaluated the effects of PHP on the growth, development and liver metabolism of chicks by feeding chicks diets in this study. The results revealed that the addition of 200 mg/kg PHP in the diet promoted the growth and development, lipid metabolism and energy metabolism in chicks and improved liver function. PHP may be a potential natural and safe feed additive applied in poultry production.


Assuntos
Galinhas , Dieta , Animais , Masculino , Dieta/veterinária , Ingestão de Alimentos , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Fígado , Ração Animal/análise
3.
Dev Comp Immunol ; 142: 104666, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764422

RESUMO

HSPA8 (Heat shock 70 kDa protein 8) is a molecular chaperone involved in a variety of cellular processes. This gene may affect the proliferation, apoptosis and immune function of chicken macrophages, but the specific mechanism remains unclear. The purpose of this study was to explore the effect of the HSPA8 gene on the proliferation, apoptosis and immune function of chicken macrophages. In this study, a chicken HSPA8 overexpression plasmid, interference fragment and corresponding controls were transfected into HD11 cells, and then the expression of the HSPA8 gene, cell proliferation, cell cycle, apoptosis rate and immune function of each group were detected. The results showed that transfection of the HSPA8 overexpression plasmid significantly upregulated the level of HSPA8 expression in HD11 cells compared with the control; significantly promoted the proliferation of HD11 cells and the expression of PCNA, CCND1 and CCNB3; decreased the number of cells in the G1 phase and increased the number of cells in the S phase; decreased the rate of apoptosis and upregulated the expression of Bcl-2; and promoted the expression of the LPS-induced cytokines IL-1ß, IL-6 and TNF-α. Transfection of the HSPA8 interference fragment significantly downregulated the level of HSPA8 expression in HD11 cells; significantly inhibited the proliferation of HD11 cells and the expression of PCNA, CCND1 and CDK1; increased the number of cells in the G1 phase and decreased the number of cells in the S phase; increased the rate of apoptosis, downregulated the expression of Bcl-2 and upregulated the expression levels of Fas and FasL; and inhibited the expression of the LPS-induced cytokines IL-1ß and NF-κB. The results suggested that HSPA8 promotes the proliferation of and inhibits the apoptosis of HD11 cells and has a proinflammatory effect.


Assuntos
Citocinas , Lipopolissacarídeos , Animais , Apoptose/genética , Proliferação de Células , Citocinas/genética , Imunidade , Lipopolissacarídeos/farmacologia , Antígeno Nuclear de Célula em Proliferação , Proteínas Proto-Oncogênicas c-bcl-2 , Galinhas
4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36805927

RESUMO

In order to investigate the regulatory role of the myeloid differentiation factor 88 (MyD88) gene in the stress inflammatory response to chicken spleen, the chicken stress model and macrophage (HD11) inflammation model were constructed in this study. Enzyme-linked immunosorbent assay and quantitative real-time PCR were used to investigate the effects of MyD88 on immune and inflammatory indicators. The results demonstrated that the levels of IgG, CD3+ and CD4+ in the serum of chickens in the beak trimming stress and heat stress groups decreased significantly compared to the control group without stress (P < 0.05), and the inflammation-related indices IL-1ß, TNF-α, IL-6 and NF-κB increased significantly (P < 0.05). Stress up-regulated the expression levels of MyD88, IL-1ß, NF-κB and TLR4 in the spleen, stimulated the release of inflammatory factors. Overexpression of MyD88 significantly up-regulated the expression levels of the inflammatory factors IL-1ß, TNF-α, IL-8, NF-κB and TLR4 in HD11 cells (P < 0.05). Co-treatment with lipopolysaccharide (LPS) further promoted the expression levels of the inflammatory cytokines in HD11 cells. Interference with the expression of MyD88 significantly reduced the expression level of inflammatory factors in HD11 cells (P < 0.05) and had an antagonistic effect with LPS to alleviate the inflammatory reaction. In conclusion, the MyD88 gene has a pro-inflammatory effect and is highly expressed in the beak trimming and heat stress models in chicks, regulating the inflammatory response in poultry. It was involved in regulating the expression of immune-related genes in HD11 cells and had a synergistic effect with LPS.


In this study, we constructed two chick stress models and a chicken macrophage (HD11) inflammation model to verify the potential mechanism of the myeloid differentiation factor 88 (MyD88) gene regulation of inflammatory response in poultry for the first time through in vivo and in vitro dual model tests. The results of this study preliminarily suggest that the MyD88 gene may be a reliable indicator of an inflammatory state in poultry and a key target for regulating the poultry inflammatory response.


Assuntos
Galinhas , Inflamação , Fator 88 de Diferenciação Mieloide , Animais , Galinhas/genética , Galinhas/metabolismo , Inflamação/genética , Inflamação/veterinária , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , NF-kappa B/genética , Transdução de Sinais , Baço/metabolismo , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo , Estresse Fisiológico
5.
BMC Genomics ; 22(1): 428, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107898

RESUMO

BACKGROUND: Estrogen plays an essential role in female development and reproductive function. In chickens, estrogen is critical for lipid metabolism in the liver. The regulatory molecular network of estrogen in chicken liver is poorly understood. To identify estrogen-responsive genes and estrogen functional sites on a genome-wide scale, we determined expression profiles of mRNAs, lncRNAs, and miRNAs in estrogen-treated ((17ß-estradiol)) and control chicken livers using RNA-Sequencing (RNA-Seq) and studied the estrogen receptor α binding sites by ChIP-Sequencing (ChIP-Seq). RESULTS: We identified a total of 990 estrogen-responsive genes, including 962 protein-coding genes, 11 miRNAs, and 17 lncRNAs. Functional enrichment analyses showed that the estrogen-responsive genes were highly enriched in lipid metabolism and biological processes. Integrated analysis of the data of RNA-Seq and ChIP-Seq, identified 191 genes directly targeted by estrogen, including 185 protein-coding genes, 4 miRNAs, and 2 lncRNAs. In vivo and in vitro experiments showed that estrogen decreased the mRNA expression of PPARGC1B, which had been reported to be linked with lipid metabolism, by directly increasing the expression of miR-144-3p. CONCLUSIONS: These results increase our understanding of the functional network of estrogen in chicken liver and also reveal aspects of the molecular mechanism of estrogen-related lipid metabolism.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Galinhas/genética , Galinhas/metabolismo , Estrogênios , Feminino , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo
6.
Theriogenology ; 159: 35-44, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33113442

RESUMO

Adiponectin is a hormone secreted by adipose tissue that is involved in the regulation of energy homeostasis and reproduction. In this study, the expression levels of adiponectin and its receptors in the hypothalamic-pituitary-ovarian (HPO) axis of laying hens were investigated using quantitative real-time PCR (qRT-PCR) and Western blotting, and the localization of these proteins was explored using immunohistochemistry. The morphological relationships between adiponectin receptors and gonadotropin-releasing hormone (GnRH) neurons were analyzed using double immunofluorescence labeling. The results showed that adiponectin mRNA and protein were widely expressed in all tissues involved in the HPO axis in laying hens, with especially high expression in the hypothalamus. Both AdipoR1 and AdipoR2 were more highly expressed in the pituitary than in other tissues and exhibited similar mRNA and protein expression patterns. The immunohistochemistry results showed that adiponectin and AdipoR2 were localized in the major hypothalamic nuclei that regulate food intake and energy balance (i.e., the lateral hypothalamic area (LHA), infundibular nucleus (IN), dorsomedial nucleus (DMN), and paraventricular nucleus (PVN)). Immunostaining revealed that adiponectin and its receptors were also localized in the cytoplasm of cells in the adenohypophysis. In the ovaries, adiponectin was localized in the granulosa layer, in the theca externa of follicles and in basal cells, while AdipoR1 and AdipoR2 were localized in basal cells. In the double immunofluorescence labeling experiment, AdipoR1 and AdipoR2 were localized in GnRH neurons in the IN and DMN. These results suggest that adiponectin and its receptors may play major roles in the endocrine network, which integrates energy balance and reproduction.


Assuntos
Adiponectina , Ovário , Adiponectina/genética , Adiponectina/metabolismo , Animais , Galinhas/metabolismo , Feminino , Ovário/metabolismo , Hipófise/metabolismo , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo
7.
J Agric Food Chem ; 68(37): 10071-10080, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32815728

RESUMO

Zearalenone (ZEA), a nonsteroidal estrogenic mycotoxin produced by Fusarium graminearum, induces hyperestrogenic responses in mammals and can cause reproductive disorders in farm animals. In this study, a transcriptome analysis of Bacillus amyloliquefaciens H6, which was previously identified as a ZEA-degrading bacterium, was conducted with high-throughput sequencing technology, and the differentially expressed genes were subjected to gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses. Among the 16 upregulated genes, BAMF_RS30125 was predicted to be the key gene responsible for ZEA degradation. The protein encoded by BAMF_RS30125 was then expressed in Escherichia coli, and this recombinant protein (named ZTE138) significantly reduced the ZEA content, as determined by the enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), and decreased the proliferating activity of ZEA in MCF-7 cells. What is more, the liquid chromatography-tandem mass spectrometry (LC-MS/MS) results showed that the relative molecular mass and the structure of ZEA also changed. Sequence alignment of the ZTE138 protein showed that it is a protease that belongs to the YBGC/FADM family of coenzyme A thioesterases, and thus, the protein can presumably cleave the ZEA lactone bond and break down its macrolide ring.


Assuntos
Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/genética , Proteínas de Bactérias/metabolismo , Tioléster Hidrolases/metabolismo , Zearalenona/metabolismo , Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/genética , Biodegradação Ambiental , Espectrometria de Massas em Tandem , Tioléster Hidrolases/genética , Transcriptoma , Zearalenona/química
8.
BMC Vet Res ; 16(1): 218, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600312

RESUMO

BACKGROUND: Studies have shown that some viral infections cause structural changes in the intestinal microflora, but little is known about the effects of tumorigenic viral infection on the intestinal microflora of chickens. RESULTS: A 29-week commercial layer flock positive for avian leukosis virus-J (ALV-J), Marek's disease virus (MDV) and avian reticuloendotheliosis virus (REV) was selected, and fresh fecal samples were collected and examined for the composition of the gut microflora by Illumina sequencing of the V3-V4 region of the 16S rRNA gene. The operational taxonomic units (OTUs) of the fecal microbiota differentiated the chickens infected with only ALV-J and those coinfected with ALV-J and MDV or REV from infection-negative chickens. The enrichment and diversity of cloacal microflora in chickens infected with ALV-J alone were slightly different from those in the infection-negative chickens. However, the diversity of cloacal microflora was significantly increased in chickens coinfected with both ALV-J and MDV or REV. CONCLUSIONS: The intestinal microbiota was more strongly disturbed in chickens after coinfection with ALV-J and MDV or REV than after infection with ALV-J alone, and there may be underlying mechanisms by which the capacity for the stabilization of the intestinal flora was impaired due to viral infection and tumorigenesis.


Assuntos
Bactérias/classificação , Coinfecção/veterinária , Microbioma Gastrointestinal , Doenças das Aves Domésticas/virologia , Animais , Leucose Aviária/virologia , Vírus da Leucose Aviária/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Galinhas , Fezes/microbiologia , Feminino , Herpesvirus Galináceo 2/isolamento & purificação , Doença de Marek/virologia , Doenças das Aves Domésticas/microbiologia , RNA Ribossômico 16S , Vírus da Reticuloendoteliose/isolamento & purificação , Infecções por Retroviridae/veterinária , Infecções Tumorais por Vírus/veterinária
9.
BMC Genomics ; 19(1): 918, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545299

RESUMO

BACKGROUND: The molecular mechanisms underlying stress-influenced immune function of chicken (Gallus Gallus) are not clear. The stress models can be established effectively by feeding chickens corticosterone (CORT) hormone. The bursa of Fabricius is a unique central immune organ of birds. RNA-Seq technology was used to investigate differences in the expression profiles of immune-related genes and associated pathways in the bursa of Fabricius to clarify molecular mechanisms. The aim of this study was to broaden the understanding of the stress-influenced immune function in chickens. RESULTS: Differentially expressed genes (DEGs) in the bursa of Fabricius between experimental group (basal diet with added CORT 30 mg/kg; C_B group) and control group (basal diet; B_B group) were identified by using RNA-seq technology. In total, we found 1434 significant DEGs (SDEGs), which included 199 upregulated and 1235 downregulated genes in the C_B group compared with the B_B group. The immune system process GO term was the top significantly GO term, including MYD88, TLR4, IL15, VEGFA gene and so on. The cytokine-cytokine receptor interaction pathway and the Toll-like receptor signaling pathway were the key pathways affected by stress. The protein-protein interaction (PPI) analysis of the SDEGs showed that VEGFA, MyD88 and IL15 were hub genes and module analysis showed that MYD88, TLR4 and VEGFA play important roles in response to stress. CONCLUSION: This study showed that the VEGFA and ILs (such as IL15) via the cytokine-cytokine receptor interaction pathway, MYD88 and TLR4 via the Toll-like receptor signaling pathway may play important roles in the regulation of immune function under stress condition with CORT administration. The results of this study provide a reference for further studies of the molecular mechanisms of stress-influenced immune function.


Assuntos
Bolsa de Fabricius/metabolismo , Galinhas/genética , Corticosterona/farmacologia , Imunidade/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Bolsa de Fabricius/efeitos dos fármacos , Bolsa de Fabricius/imunologia , Galinhas/imunologia , Análise por Conglomerados , Dieta , Imunidade/genética , Interleucina-15/genética , Interleucina-15/metabolismo , Modelos Animais , Mapas de Interação de Proteínas/efeitos dos fármacos , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
J Genet ; 97(1): 145-155, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29666334

RESUMO

The cathepsin E-A-like, also known as 'similar to nothepsin', is a new member of the aspartic protease family, which may take part in processing of egg yolk macromolecules, due to it was identified in the chicken egg-yolk. Previously, studies have suggested that the expression of cathepsin E-A-like increased gradually during sexual maturation of pullets, but the exact regulation mechanism is poorly understood. In this study, to gain insight into the function and regulation mechanism of the gene in egg-laying hen, we cloned the cathepsin E-A-like gene and evaluated its evolutionary origin by using both phylogenetic and syntenic methods. The mode of the gene expression regulation was analysed through stimulating juvenile hens with 17ß-estradiol and chicken embryo hepatocytes with 17ß-estradiol combined with oestrogen receptor antagonists including MPP, ICI 182,780 and tamoxifen. Our results showed that cathepsin E-A-like was an orthologoues gene with nothepsin, which is present in birds but not in mammals. The expression of cathepsin E-A-like significantly increased in a dose-dependent manner after the juvenile hens were treated with 17ß-estradiol (P < 0.05). Compared with the 17ß-estradiol treatment group, the expression of cathepsin E-A-like was not significantly changed when the hepatocytes were treated with 17ß-estradiol combined with MPP (P < 0.05). In contrast, compared with the 17ß-estradiol combined with MPP treatment group, the expression of cathepsin E-A-like was significantly downregulated when the hepatocytes were treated with 17ß-estradiol combined with tamoxifen or ICI 182,780 (P < 0.05). These results demonstrated that cathepsin E-A-like shared the same evolutionary origin with nothepsin. The expression of cathepsin E-A-like was regulated by oestrogen, and the regulative effect was predominantly mediated through ER-Β in liver of chicken.


Assuntos
Catepsina E/genética , Galinhas/genética , Receptor beta de Estrogênio/metabolismo , Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Sequência de Aminoácidos , Animais , Catepsina E/química , Catepsina E/metabolismo , Clonagem Molecular , Sequência Conservada/genética , Receptor beta de Estrogênio/antagonistas & inibidores , Genoma , Fígado/efeitos dos fármacos , Filogenia , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Sintenia/genética
11.
Genome ; 60(8): 673-678, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28636837

RESUMO

Apolipoprotein B (ApoB) is a major protein component of plasma lipoproteins. It is involved in many important biological processes such as lipid transportation, enzyme activity regulation, and receptor recognition. Extensive studies have shown that the expression of ApoB is regulated at multiple levels. However, the regulation of ApoB expression by microRNAs (miRNAs) still remains unknown. In the present study, identified are miRNAs that are predicted to interact with ApoB in chicken. The predicted relationship between the identified miRNAs and ApoB was verified through dual luciferase reporter assay in chicken DF1 cells, and the effect of miRNAs on ApoB expression was analyzed in chicken embryo hepatocytes stimulated by 17ß-estradiol. The results show that miR-101-2-5p was predicted to interact with ApoB. Dual luciferase reporter assay together with the miR-101-2-5p mimics study demostrate that ApoB is the target of miR-101-2-5p, which suppresses the expression of ApoB through binding with the 3'UTR of ApoB. Our experiments suggest that miR-101-2-5p might be involved in lipid metabolism through binding to the 3'UTR of ApoB in the liver of egg-laying chickens.


Assuntos
Apolipoproteínas B/genética , Galinhas/genética , Regulação da Expressão Gênica , Fígado/metabolismo , MicroRNAs/metabolismo , Animais , Células Cultivadas , Feminino
12.
Am J Vet Res ; 75(8): 752-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25061707

RESUMO

OBJECTIVE: To determine the effects of resveratrol (RES) on growth and immune status in chickens receiving conventional vaccinations. ANIMALS: Two hundred forty 1-day-old layer chickens. PROCEDURES: Chickens received conventional vaccinations throughout the study and were randomly assigned to 1 of 4 treatments in 6 replicate pens/treatment. Treatments included 1 control group (basal diet) and 3 experimental groups fed the basal diet plus 200, 400, and 800 mg of RES/kg of diet. At 40 days of age, 1 bird/pen was randomly selected to have blood and tissues collected to determine serum immunity indices; mRNA relative expression of proinflammatory cytokines in splenocytes; mRNA relative expression of nuclear transcription factor-κB, growth hormone receptor, and insulin-like growth factor-1 in hepatocytes; cell proliferation; and apoptosis. RESULTS: Average daily gain, antibody titers against Newcastle disease virus and avian influenza viruses H5 and H9, and insulin-like growth factor-1 expression were quadratically increased with increasing RES concentration. In hepatocytes, growth hormone receptor gene mRNA relative expression was quadratically increased and nuclear transcription factor-κB gene mRNA relative expression was linearly decreased with increasing RES concentration. In splenocytes, nterleukin-1ß and tumor necrosis factor-α mRNA relative expression was linearly decreased with increasing RES concentration. Resveratrol supplementation delayed cell proliferation and reduced apoptosis in immunocytes. With increasing RES concentration, proliferation index and relative weight of the thymus, ratio of CD4+ to CD8+ cells, and CD4+ cell count were quadratically increased, and IgM concentration was linearly increased. CONCLUSIONS AND CLINICAL RELEVANCE: Dietary resveratrol supplementation improved growth, protected immunocytes against antigen-induced apoptosis, and upregulated immune response in chickens that received conventional vaccinations.


Assuntos
Galinhas/crescimento & desenvolvimento , Galinhas/imunologia , Dieta/veterinária , Suplementos Nutricionais , Estilbenos/administração & dosagem , Vacinação/veterinária , Análise de Variância , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cruzamentos Genéticos , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Citometria de Fluxo , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , NF-kappa B/metabolismo , Receptores da Somatotropina/metabolismo , Resveratrol , Baço/metabolismo , Linfócitos T/efeitos dos fármacos , Vacinação/métodos
13.
Anim Sci J ; 84(2): 121-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23384353

RESUMO

This experiment was undertaken to examine the effect of beak trimming stress on the growth performance and immune system, and to consider possible roles of γ-aminobutyric acid (GABA) in this stress response. Results showed that body weight, feed intake and relative spleen weight were significantly increased by GABA at 80 mg/kg (P < 0.05) under beak trimming stress, whereas the relative organ weights of the bursa of fabricius and thymus were not significantly affected (P > 0.05). Adrenocorticotropic hormone concentration in serum was highest for chicks fed the GABA-deficient water and was significantly decreased by the supplement of GABA at days 1, 3 and 5 after beak trimming (P < 0.05). The supplement of GABA significantly increased the proportions of CD4(+) and CD8(+) lymphocytes, especially at the dose of 60 mg/kg (P < 0.05). The levels of interleukin (IL)-1ß, lipopolysaccharide-induced tumor necrosis factor-α and IL-6 in serum were significantly decreased by GABA at 80 mg/kg (P < 0.05). All the three cytokines expressed in the spleen were significantly decreased by GABA at 80 mg/kg when birds were under beak trimming stress (P < 0.05). It is concluded that beak trimming suppressed the immune response of chicks, whereas the immune response of chicks could be improved by GABA supplementation.


Assuntos
Criação de Animais Domésticos/métodos , Bico/fisiologia , Galinhas/crescimento & desenvolvimento , Galinhas/imunologia , Estresse Fisiológico/imunologia , Estresse Psicológico/imunologia , Ácido gama-Aminobutírico/farmacologia , Hormônio Adrenocorticotrópico/sangue , Animais , Peso Corporal/efeitos dos fármacos , Contagem de Linfócito CD4 , Linfócitos T CD8-Positivos , Citocinas/sangue , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Baço/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA