Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
World J Clin Cases ; 12(1): 163-168, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38292635

RESUMO

BACKGROUND: Endophthalmitis occurring in silicone oil-filled eyes is a very rare occurrence, with reported incidence rates ranging between 0.07% and 0.039%. Traditional methods of management of infectious endophthalmitis include the removal of silicone oil, washout of the vitreous cavity, administration of intravitreal antibiotics, and re-injection of silicone oil. CASE SUMMARY: Herein, we report the case of a 39-year-old man with unilateral endophthalmitis after pars plana vitrectomy and silicone oil tamponade. Intravitreal injections of full-dose antibiotics and anterior chamber washout were used to treat the patient. No signs of retinal toxicity were observed during the follow-up period. CONCLUSION: Intravitreal full-dose antibiotic injections and anterior chamber washout are promising alternatives to traditional therapies for endophthalmitis in silicone oil-filled eyes.

2.
BMC Ophthalmol ; 23(1): 331, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474921

RESUMO

BACKGROUND: To evaluate the effect of room air and sulfur hexafluoride (SF6) gas in idiopathic macular hole(MH)surgery. METHODS: Retrospective, interventional, and comparative study. 238 eyes with the idiopathic macular hole that underwent pars plana vitrectomy, internal limiting membrane peeling, fluid-air exchange, and 20% SF6 (SF6 group:125 eyes) or room air tamponade (air group: 113 eyes) were reviewed. The primary outcome measure was the closure rate of primary surgery. RESULTS: The baseline characteristics of the SF6 group and air group were comparable except for the hole size (479.90 ± 204.48 vs. 429.38 ± 174.63 µm, P = 0.043). The anatomical closure rate was 92.8% (116 / 125) with the SF6 group and 76.1% (86 / 113) with the air group (P < 0.001). A cut-off value of MH size to predict primary anatomical closure was 520 µm, which is based on the lower limit of 95% confidential interval of the MH size among the unclosed patients in the air group. There was no significant difference in anatomical closure rates between SF6 and air group (98.7% vs. 91.9%, P = 0.051) for MH ≤ 520 µm, whereas a significantly lower anatomical closure rate was shown in the air group than SF6 group (46.2% vs. 84.0%, P < 0.001) for MH > 520 µm. CONCLUSION: SF6 exhibited more effectiveness than air to achieve a good anatomical outcome for its longer tamponade when MH > 520 µm.


Assuntos
Perfurações Retinianas , Humanos , Perfurações Retinianas/cirurgia , Estudos Retrospectivos , Hexafluoreto de Enxofre , Vitrectomia , Acuidade Visual
3.
Chem Biol Interact ; 348: 109640, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506767

RESUMO

Intestinal stem cell (ISC)-driven intestinal homeostasis is subjected to dual regulation by dietary nutrients and toxins. Our study investigated the use of lauric acid (LA) to alleviate deoxynivalenol (DON)-induced intestinal epithelial damage. C57BL/6 mice in the control, LA, DON, and LA + DON groups were orally administered PBS, 10 mg/kg BW LA, 2 mg/kg BW DON, and 10 mg/kg BW LA + 2 mg/kg BW DON for 10 days. The results showed that LA increased the average daily gain and average daily feed intake of the mice exposed to DON. Moreover, the DON-triggered impairment of jejunal morphology and barrier function was significantly improved after LA supplementation. Moreover, LA rescued ISC proliferation, inhibited intestinal cell apoptosis, and promoted ISC differentiation into absorptive cells, goblet cells, and Paneth cells. The jejunum crypt cells from the mice in the LA group expanded into enteroids, resulting in a significantly greater enteroid area than that in the DON group. Furthermore, LA reversed the DON-mediated inhibition of the Akt/mTORC1/S6K1 signaling axis in the jejunum. Our results indicated that LA accelerates ISC regeneration to repair intestinal epithelial damage after DON insult by reactivating the Akt/mTORC1/S6K1 signaling pathway, which provides new implications for the function of LA in ISCs.


Assuntos
Intestinos/citologia , Ácidos Láuricos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Tricotecenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
4.
Front Microbiol ; 12: 651952, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093468

RESUMO

Diseases caused by Flaviviridae have a wide global and economic impact due to high morbidity and mortality. Flaviviridae infection usually leads to severe, acute or chronic diseases, such as liver injury and liver cancer resulting from hepatitis C virus (HCV) infection, dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS) caused by dengue virus (DENV). Given the highly complex pathogenesis of Flaviviridae infections, they are still not fully understood at present. Accumulating evidence suggests that host autophagy is disrupted to regulate the life cycle of Flaviviridae. Organelle-specific autophagy is able to selectively target different organelles for quality control, which is essential for regulating cellular homeostasis. As an important sub process of autophagy, lipophagy regulates lipid metabolism by targeting lipid droplets (LDs) and is also closely related to the infection of a variety of pathogenic microorganisms. In this review, we briefly understand the LDs interaction relationship with Flaviviridae infection, outline the molecular events of how lipophagy occurs and the related research progress on the regulatory mechanisms of lipophagy in Flaviviridae infection. Exploring the crosstalk between viral infection and lipophagy induced molecular events may provide new avenues for antiviral therapy.

5.
Braz J Med Biol Res ; 54(6): e10474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886809

RESUMO

Osteosarcoma is a highly malignant tumor that occurs in the bone. Previous studies have shown that multiple microRNAs (miRNAs) regulate the development of osteosarcoma. This study aimed to explore the role of miR-629-5p and its target gene, caveolin 1 (CAV1), in osteosarcoma development. To analyze the expression of miR-629-5p and CAV1 mRNA in osteosarcoma tissues and cell lines, qRT-PCR analysis was performed. Dual-luciferase reporter experiments were subsequently performed to validate the relationship between CAV1 and miR-629-5p. CCK8 assay was used to measure osteosarcoma cell proliferation, and wound-healing assay was performed to study their migratory phenotype. Our findings revealed that miR-629-5p was overexpressed in osteosarcoma tissues and cells, and thereby enhanced cell proliferation and migration. Further, we validated that miR-629-5p targets CAV1 mRNA directly. CAV1 expression, which was negatively correlated with miR-629-5p expression, was found to be downregulated in osteosarcoma tissue samples. Moreover, our data showed that an increase in CAV1 level led to a decline in osteosarcoma cell proliferation and migration, which could be rescued by miR-629-5p upregulation. Overall, our study confirmed that miR-629-5p promoted osteosarcoma proliferation and migration by directly inhibiting CAV1.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Neoplasias Ósseas/genética , Caveolina 1/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Osteossarcoma/genética
6.
Biomed Pharmacother ; 138: 111511, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33744757

RESUMO

Flavonoids are natural plant-derived dietary bioactive compounds having a substantial impact on human health. Morin hydrate is a bioflavonoid mainly obtained from fruits, stem, and leaves of Moraceae family members' plants. Plenty of evidences supported that morin hydrate exerts its beneficial effects against various chronic and life-threatening degenerative diseases. Our current article discloses the recent advances that have been studied to explore the biological/pharmacological properties and molecular mechanisms to better understand the beneficial and multiple health benefits of morin hydrate. Indeed, Morin hydrate exerts free radical scavenging, antioxidant, anti-inflammatory, anti-cancerous, anti-microbial, antidiabetic, anti-arthritis, cardioprotective, neuroprotective, nephroprotective, and hepatoprotective effects. Moreover, morin hydrate exhibits its pharmacological activities by modulating various cellular signaling pathways such as Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-қB), Mitogen-activated protein kinase (MAPK), Janus kinases/ Signal transducer and activator of transcription proteins (JAKs/STATs), Kelch-like ECH-associated protein1/Nuclear erythroid-2-related factor (Keap1/Nrf2), Endoplasmic reticulum (ER), Mitochondrial-mediated apoptosis, Wnt/ß-catenin, and Mechanistic target of rapamycin (mTOR). Most importantly, morin hydrate has the potential to modulate a variety of biological networks. Therefore, it can be predicted that this therapeutically potent compound could serve as a dietary agent for the expansion of human health and might be helpful for the development of the novel drug in the future. However, due to the lack of clinical trials, special human clinical trials are needed to address the effects of morin hydrate on various life-threatening disparities to recommend morin and/or morin-rich foods with other foods or bioactive dietary components, as well as dose-response interaction and safety profile.


Assuntos
Antioxidantes/administração & dosagem , Flavonoides/administração & dosagem , Compostos Fitoquímicos/administração & dosagem , Animais , Antioxidantes/isolamento & purificação , Diabetes Mellitus/dietoterapia , Diabetes Mellitus/metabolismo , Flavonoides/isolamento & purificação , Cardiopatias/dietoterapia , Cardiopatias/metabolismo , Humanos , Doenças Neurodegenerativas/dietoterapia , Doenças Neurodegenerativas/metabolismo , Compostos Fitoquímicos/isolamento & purificação
7.
Braz. j. med. biol. res ; 54(6): e10474, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1285667

RESUMO

Osteosarcoma is a highly malignant tumor that occurs in the bone. Previous studies have shown that multiple microRNAs (miRNAs) regulate the development of osteosarcoma. This study aimed to explore the role of miR-629-5p and its target gene, caveolin 1 (CAV1), in osteosarcoma development. To analyze the expression of miR-629-5p and CAV1 mRNA in osteosarcoma tissues and cell lines, qRT-PCR analysis was performed. Dual-luciferase reporter experiments were subsequently performed to validate the relationship between CAV1 and miR-629-5p. CCK8 assay was used to measure osteosarcoma cell proliferation, and wound-healing assay was performed to study their migratory phenotype. Our findings revealed that miR-629-5p was overexpressed in osteosarcoma tissues and cells, and thereby enhanced cell proliferation and migration. Further, we validated that miR-629-5p targets CAV1 mRNA directly. CAV1 expression, which was negatively correlated with miR-629-5p expression, was found to be downregulated in osteosarcoma tissue samples. Moreover, our data showed that an increase in CAV1 level led to a decline in osteosarcoma cell proliferation and migration, which could be rescued by miR-629-5p upregulation. Overall, our study confirmed that miR-629-5p promoted osteosarcoma proliferation and migration by directly inhibiting CAV1.


Assuntos
Humanos , Neoplasias Ósseas/genética , Osteossarcoma/genética , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Caveolina 1/genética
8.
Food Funct ; 11(3): 2714-2724, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32163057

RESUMO

l-Glutamate (Glu) is a nutritionally functional amino acid for pigs. In addition, intestinal stem cells (ISCs) maintain epithelial renewal and homeostasis by dynamically regulating proliferation and differentiation to cope with environmental cues. The rapid renewal of the intestinal epithelium requires a continuous supply of energy sources such as Glu. However, the effects of Glu on ISCs and epithelial renewal are poorly understood. In this study, we found that dietary Glu accelerated intestinal epithelial renewal and gut growth. The epidermal growth factor receptor (EGFR)/extracellular regulated protein kinase (ERK) pathway and mechanistic target of rapamycin complex 1 (mTORC1) signaling were involved in this response in piglets. Subsequent cellular assessment suggested that the EGFR/ERK pathway was upstream of Glu-induced mTORC1 signaling activation. Furthermore, we found that Glu activated the EGFR/ERK pathway and promoted ISC proliferation and differentiation in porcine intestinal organoids. Collectively, our findings suggest that Glu drives intestinal epithelial renewal by increasing ISC activity via the EGFR/ERK/mTORC1 pathway. The present study provides direct evidence that mTORC1 is activated by extracellular Glu through EGFR and that Glu acts as a nutritionally functional amino acid for piglets to maintain intestinal growth and health.


Assuntos
Ácido Glutâmico/farmacologia , Mucosa Intestinal , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Suínos
9.
J Cell Physiol ; 235(7-8): 5613-5627, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31960439

RESUMO

Heat stress induced by continuous high ambient temperatures or strenuous exercise in humans and animals leads to intestinal epithelial damage through the induction of intracellular stress response. However, the precise mechanisms involved in the regulation of intestinal epithelial cell injury, especially intestinal stem cells (ISCs), remain unclear. Thereby, in vitro a confluent monolayer of IPEC-J2 cells was exposed to the high temperatures (39, 40, and 41°C), the IPEC-J2 cell proliferation, apoptosis, differentiation, and barrier were determined, as well as the expression of GRP78, which is a marker protein of endoplasmic reticulum stress (ERS). The Wnt/ß-catenin pathway-mediated regenerative response was validated using R-spondin 1 (Rspo1). And ex-vivo, three-dimensional cultured enteroids were developed from piglet jejunal crypt and employed to assess the ISC activity under heat exposure. The results showed that exposure to 41°C for 72 hr, rather than 39°C and 40°C, decreased IPEC-J2 cell viability, inhibited cell proliferation and differentiation, induced ERS and cell apoptosis, damaged barrier function and restricted the Wnt/ß-catenin pathway. Nevertheless, Wnt/ß-catenin reactivation via Rspo1 protects the intestinal epithelium from heat exposure-induced injury. Furthermore, exposure to 41°C for 24 hr reduced ISC activity, stimulated crypt-cell apoptosis, upregulated the expression of GRP78 and caspase-3, and downregulated the expression of ß-catenin, Lgr5, Bmi1, Ki67, KRT20, ZO-1, occludin, and claudin-1. Taken together, we conclude that heat exposure induces ERS and downregulates the Wnt/ß-catenin signaling pathway to disrupt epithelial integrity by inhibiting the intestinal epithelial cell proliferation and stem cell expansion.


Assuntos
Proliferação de Células/genética , Estresse do Retículo Endoplasmático/genética , Retículo Endoplasmático/genética , Mucosa Intestinal/metabolismo , Animais , Apoptose/genética , Caspase 3/genética , Ciclo Celular/genética , Diferenciação Celular/genética , Chaperona BiP do Retículo Endoplasmático , Células Epiteliais/metabolismo , Temperatura Alta/efeitos adversos , Humanos , Mucosa Intestinal/crescimento & desenvolvimento , Complexo Repressor Polycomb 1/genética , Células-Tronco/metabolismo , Suínos/genética , Via de Sinalização Wnt/genética , beta Catenina/genética
10.
J Sci Food Agric ; 100(2): 665-671, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31583700

RESUMO

BACKGROUND: Muscle fat content and fatty acid composition play an important role in poultry flavor and taste. To investigate the effects of pioglitazone hydrochloride (PGZ) on growth performance and thigh muscle quality in yellow-feathered chickens, 360 female chickens were randomly divided into three groups and treated with three doses of PGZ (0, 7.5, and 15 mg kg-1 ) for 28 days. Each group had six replicates of 20 chickens. RESULTS: The results showed that dietary supplementation with 15 mg kg-1 PGZ increased average daily feed intake (ADFI) and the average daily gain (ADG) from 0 to 14 days. Furthermore, the triglyceride (TG) level was decreased by 15 mg kg-1 PGZ, whereas the eviscerated yield was increased. The relative weight of the heart and kidneys showed a linear increase with dietary PGZ supplementation, and the drip loss of the thigh muscle was significantly decreased by 15 mg kg-1 PGZ supplementation. Moreover, a* value, intramuscular fat (IMF), and polyunsaturated fatty acids (PUFAs) showed a linear increase, and pH24 h and drip loss showed a quadratic influence with the levels of PGZ supplementation. In particular, the PUFA proportion was increased by 7.63% and 9.14% in the 7.5 mg kg-1 PGZ and 15 mg kg-1 PGZ groups, respectively. Additionally, 15 mg kg-1 of PGZ increased the total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-PX ) activity. CONCLUSION: In summary, 15 mg kg-1 PGZ has substantial effects on growth performance and meat quality, particularly by decreasing drip loss and increasing IMF content, PUFA proportions, and antioxidant ability. © 2019 Society of Chemical Industry.


Assuntos
Antioxidantes/metabolismo , Galinhas/metabolismo , Ácidos Graxos/química , Músculo Esquelético/metabolismo , Pioglitazona/administração & dosagem , Coxa da Perna/crescimento & desenvolvimento , Ração Animal/análise , Animais , Galinhas/crescimento & desenvolvimento , Suplementos Nutricionais/análise , Ácidos Graxos/metabolismo , Feminino , Glutationa Peroxidase/metabolismo , Carne/análise , Músculo Esquelético/química , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/crescimento & desenvolvimento
11.
J Agric Food Chem ; 67(34): 9510-9521, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31382738

RESUMO

Glutamate (Glu) is a critical nutritional regulator of intestinal epithelial homeostasis. In addition, intestinal stem cells (ISCs) at crypt bases are known to play important roles in maintaining the renewal and homeostasis of the intestinal epithelium, and the aspects of communication between Glu and ISCs are still unknown. Here, we identify Glu and mammalian target of rapamycin complex 1 (mTORC1) as essential regulators of ISC expansion. The results showed that extracellular Glu promoted ISC expansion, indicated by increased intestinal organoid forming efficiency and budding efficiency as well as cell proliferation marker Ki67 immunofluorescence and differentiation marker Keratin 20 (KRT20) expression. Moreover, the insulin receptor (IR) mediating phosphorylation of the insulin receptor substrate (IRS) and downstream signaling phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway was involved in this response in ISCs. As expected, Glu-induced mTORC1 signaling activation was observed in the intestinal porcine enterocyte cell line (IPEC-J2), and Glu activated the PI3K/Akt/mTORC1 pathway. Accordingly, PI3K inhibition partially suppressed Glu-induced mTORC1 activation. In addition, Glu increased the phosphorylation levels of IR and IRS, and inhibiting IR downregulated the IRS/PI3K/Akt pathway. Collectively, our findings first indicate that extracellular Glu activates mTORC1 via the IR/IRS/PI3K/Akt pathway and stimulates ISC expansion, providing a new perspective for regulating the growth and health of the intestinal epithelium.


Assuntos
Ácido Glutâmico/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Mucosa Intestinal/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Células-Tronco/metabolismo , Animais , Proteínas Substratos do Receptor de Insulina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Receptor de Insulina/genética , Transdução de Sinais , Suínos
12.
J Cell Physiol ; 234(10): 19028-19038, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30937902

RESUMO

The crypt-villus axis of the intestine undergoes a continuous renewal process that is driven by intestinal stem cells (ISCs). However, the homeostasis is disturbed under constant exposure to high ambient temperatures, and the precise mechanism is unclear. We found that both EdU+ and Ki67+ cell ratios were significantly reduced after exposure to 41°C, as well as the protein synthesis rate of IPEC-J2 cells, and the expression of ubiquitin and heat shock protein 60, 70, and 90 were significantly increased. Additionally, heat exposure decreased enteroid expansion and budding efficiency, as well as induced apoptosis after 48 hr; however, no significant difference was observed in the apoptosis ratio after 24 hr. In the process of heat exposure, the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway was significantly inhibited in both IPEC-J2 cells and enteroids. Correspondingly, treatment of IPEC-J2 and enteroids with the mTORC1 agonist MHY1485 at 41°C significantly attenuated the inhibition of proliferation and protein synthesis, increased the ISC activity, and promoted expansion and budding of enteroid. In summary, we conclude that the mTORC1 signaling pathway regulates intestinal epithelial cell and stem cell activity during heat exposure-induced injury.


Assuntos
Proliferação de Células/fisiologia , Células Epiteliais/metabolismo , Mucosa Intestinal/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células-Tronco/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular , Chaperonina 60/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Temperatura Alta/efeitos adversos , Mucosa Intestinal/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/agonistas , Transdução de Sinais/fisiologia , Suínos , Ubiquitina/metabolismo
13.
Toxicol Lett ; 305: 19-31, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30690062

RESUMO

The intake of food containing deoxynivalenol frequently causes damage to the intestine, the renewal of which is driven by intestinal stem cells (ISCs). Nevertheless, the toxicity of deoxynivalenol on ISCs and its underlying mechanisms remain to be elucidated. As pigs are the most sensitive animals to deoxynivalenol, we used piglets for investigation in this study. Here, we show that intestinal epithelial cell activity, B cell-specific Moloney murine leukemia virus insertion site 1 (Bmi1) protein level, and Wnt/ß-catenin pathway activity were suppressed with acute expose to deoxynivalenol. We further established a novel system for porcine crypt isolation and ex vivo cultivation. Crypts and crypt cells expanded and budded with typical enteroid morphologies under this system. Our results show that both acute in vivo and in vitro administration of deoxynivalenol significantly decreased enteroid activity. Simultaneously, protein levels of ß-catenin and leucine-rich-repeat-containing G-protein-coupled receptor 5 (Lgr5) in enteroids were reduced by deoxynivalenol exposure. In conclusion, we established a reliable culture system for porcine enteroids and demonstrated for the first time that the activity of ISCs and the Wnt/ß-catenin pathway is sensitively suppressed by acute deoxynivalenol exposure.


Assuntos
Jejuno/efeitos dos fármacos , Suínos , Tricotecenos/toxicidade , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Proteínas Wnt/genética , beta Catenina/genética
14.
Meat Sci ; 145: 340-346, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30015164

RESUMO

To investigate the effects of pioglitazone hydrochloride (PGZ) and vitamin E (VE), 160 Duroc × Landrace × Large White pigs were randomly divided into a 2 × 2 factorial arrangement with 2 levels of PGZ (0 or 15 mg/kg) and 2 levels of VE (0 or 325 mg/kg) for 28 days. Each group had 5 replicates with 8 pigs, half males and half females. Feeding PGZ increased intramuscular fat and VE supplementation decreased cooking loss (P < 0.05). Feeding VE increased total polyunsaturated fatty acid (PUFA), C18:2n-6 and C18:3n-3 (P < 0.05). For 18:3n-3, the increase in C18:3n-3 due to VE was accentuated when combined with PGZ (P < 0.001). Additionally, VE tended to increase superoxide dismutase (P = 0.079) and glutathione peroxidase activity (P = 0.054). In summary, PGZ and VE had positive effects on pork quality by decreasing cooking loss and increasing intramuscular fat and antioxidant capacity, and may prove useful in improving the healthfulness of fatty acid profiles.


Assuntos
Antioxidantes/análise , Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais , Ácidos Graxos/sangue , Carne Vermelha/análise , Tiazolidinedionas/farmacologia , Vitamina E/farmacologia , Tecido Adiposo/metabolismo , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Antioxidantes/farmacologia , Culinária , Dieta , Ácidos Graxos Insaturados/sangue , Feminino , Glutationa Peroxidase/metabolismo , Hipoglicemiantes/farmacologia , Masculino , Músculo Esquelético/metabolismo , Pioglitazona , Distribuição Aleatória , Superóxido Dismutase/metabolismo , Sus scrofa
15.
J Agric Food Chem ; 66(17): 4345-4351, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29682966

RESUMO

This work was designed to investigate the synergistic effects of pioglitazone hydrochloride (PGZ) and chromium methionine (CrMet) on meat quality, muscle fatty acid profile, and antioxidant ability of pigs. Pigs in four groups were fed a basic diet or basic diet supplemented with 15 mg/kg of PGZ, 200 µg/kg of CrMet, or 15 mg/kg of PGZ + 200 µg/kg of CrMet. In comparison to the control group, the average daily feed intake, feed/gain ratio, and serum high-density lipoprotein level decreased in the PGZ + CrMet group. Dietary PGZ + CrMet supplementation increased carcass dressing percentage, intramuscular fat, and marbling score. The percentages of C18:1ω-9c, C18:2ω-6c, C18:3ω-3, and polyunsaturated fatty acid (PUFA) in the longissimus thoracis muscle were increased in the PGZ + CrMet group. Greater superoxide dismutase and glutathione peroxidase activities were observed in the PGZ + CrMet group compared to the control group. Collectively, these findings suggested that feed with PGZ and CrMet improved the growth performance and meat quality, especially for PUFA proportions and antioxidant ability.


Assuntos
Cromo/administração & dosagem , Dieta/veterinária , Carne/análise , Metionina/administração & dosagem , Sus scrofa/crescimento & desenvolvimento , Tiazolidinedionas/administração & dosagem , Tecido Adiposo , Ração Animal , Animais , Antioxidantes/análise , Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais , Sinergismo Farmacológico , Ácidos Graxos/análise , Feminino , Lipoproteínas HDL/sangue , Masculino , Músculo Esquelético/química , Músculo Esquelético/fisiologia , Pioglitazona
16.
Int J Mol Sci ; 19(4)2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29601474

RESUMO

Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) and B-cell-specific Moloney murine leukemia virus insertion site 1 (BMI1) are markers of fast-cycling and quiescent intestinal stem cells, respectively. To determine the functions of these proteins in large animals, we investigated their effects on the proliferation of intestinal epithelial cells from pigs. Our results indicated that LGR5 and BMI1 are highly conserved proteins and that the pig proteins have greater homology with the human proteins than do mouse proteins. Overexpression of either LGR5 or BMI1 promoted cell proliferation and WNT/ß-catenin signaling in pig intestinal epithelial cells (IPEC-J2). Moreover, the activation of WNT/ß-catenin signaling by recombinant human WNT3A protein increased cell proliferation and LGR5 and BMI1 protein levels. Conversely, inhibition of WNT/ß-catenin signaling using XAV939 reduced cell proliferation and LGR5 and BMI1 protein levels. This is the first report that LGR5 and BMI1 can increase proliferation of pig intestinal epithelial cells by activating WNT/ß-catenin signaling.


Assuntos
Proliferação de Células/fisiologia , Complexo Repressor Polycomb 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Intestinos/citologia , Complexo Repressor Polycomb 1/genética , Receptores Acoplados a Proteínas G/genética , Suínos , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
17.
Int J Mol Sci ; 18(11)2017 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-29156556

RESUMO

Caudal type homeobox 2 (CDX2) is expressed in intestinal epithelial cells and plays a role in gut development and homeostasis by regulating cell proliferation. However, whether CDX2 cooperates with the mammalian target of rapamycin complex 1 (mTORC1) and Wnt/ß-catenin signaling pathways to stimulate cell proliferation remains unknown. The objective of this study was to investigate the effect of CDX2 on the proliferation of porcine jejunum epithelial cells (IPEC-J2) and the correlation between CDX2, the mTORC1 and Wnt/ß-catenin signaling pathways. CDX2 overexpression and knockdown cell culture models were established to explore the regulation of CDX2 on both pathways. Pathway-specific antagonists were used to verify the effects. The results showed that CDX2 overexpression increased IPEC-J2 cell proliferation and activated both the mTORC1 and Wnt/ß-catenin pathways, and that CDX2 knockdown decreased cell proliferation and inhibited both pathways. Furthermore, the mTORC1 and Wnt/ß-catenin pathway-specific antagonist rapamycin and XAV939 (3,5,7,8-tetrahydro-2-[4-(trifluoromethyl)]-4H -thiopyrano[4,3-d]pyrimidin-4-one) both suppressed the proliferation of IPEC-J2 cells overexpressing CDX2, and that the combination of rapamycin and XAV939 had an additive effect. Regardless of whether the cells were treated with rapamycin or XAV939 alone or in combination, both mTORC1 and Wnt/ß-catenin pathways were down-regulated, accompanied by a decrease in CDX2 expression. Taken together, our data indicate that CDX2 stimulates porcine intestinal epithelial cell proliferation by activating the mTORC1 and Wnt/ß-catenin signaling pathways.


Assuntos
Fator de Transcrição CDX2/genética , Células Epiteliais/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Via de Sinalização Wnt , Animais , Fator de Transcrição CDX2/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Compostos Heterocíclicos com 3 Anéis/farmacologia , Sirolimo/farmacologia , Suínos , Via de Sinalização Wnt/efeitos dos fármacos
18.
Oncotarget ; 7(25): 38681-38692, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27231847

RESUMO

Excitatory amino acid transporter 3 (EAAT3, encoded by SLC1A1) is an epithelial type high-affinity anionic amino acid transporter, and glutamate is the major oxidative fuel for intestinal epithelial cells. This study investigated the effects of EAAT3 on amino acid transport and cell proliferation through activation of the mammalian target of the rapamycin (mTOR) pathway in porcine jejunal epithelial cells (IPEC-J2). Anionic amino acid and cystine (Cys) transport were increased (P<0.05) by EAAT3 overexpression and decreased (P<0.05) by EAAT3 knockdown rather than other amino acids. MTT and cell counting assays suggested that IPEC-J2 cell proliferation increased (P<0.05) with EAAT3 overexpression. Phosphorylation of mTOR (Ser2448), ribosomal protein S6 kinase-1 (S6K1, Thr389) and eukaryotic initiation factor 4E-binding protein-1 (4EBP1, Thr70) was increased by EAAT3 overexpression and decreased by EAAT3 knockdown (P<0.05), as were levels of activating transcription factor 4 (ATF4) and cystine/glutamate antiporter (xCT) (P<0.05). Our results demonstrate for the first time that EAAT3 facilitates anionic amino acid transport and activates the mTOR pathway, promoting Cys transport and IPEC-J2 cell proliferation.


Assuntos
Células Epiteliais/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Mucosa Intestinal/metabolismo , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Transportador 3 de Aminoácido Excitatório/biossíntese , Feminino , Humanos , Intestinos/citologia , Masculino , Suínos
19.
Oncotarget ; 7(21): 30845-54, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27127174

RESUMO

The focal adhesion kinase (FAK) signaling pathway contributes to the cell migration and adhesion that is critical for wound healing and regeneration of damaged muscle, but its function in skeletal muscle satellite cells (SCs) is less clear. We compared the migration and adhesion of SCs derived from two species of pig (Lantang and Landrace) in vitro, and explored how FAK signaling modulates the two processes. The results showed that Lantang SCs had greater ability to migrate and adhere to fibronection (P < 0.05) than Landrace SCs. Compared to Landrace SCs, Lantang SCs expressed many more focal adhesion (FA) sites, which were indicated by the presence of p-paxillin (Tyr118), and exhibited less F-actin reorganization 24 h after seeding onto fibronectin. Levels of p-FAK (Tyr397) and p-paxillin (Tyr118) were greater (P < 0.05) in Lantang SCs than Landrace SCs after migration for 24 h. Similarly, Lantang SCs showed much higher levels of p-FAK (Tyr397), p-paxillin (Tyr118) and p-Akt (Ser473) than Landrace SCs 2 h after adhesion. Treatment with the FAK inhibitor PF-573228 (5 or 10 µmol/L) inhibited Lantang SC migration and adhesion to fibronectin (P < 0.05), decreased levels of p-paxillin (Tyr118) and p-Akt (Ser473) (P < 0.05), and suppressed the formation of FA sites on migrating SCs. Thus FAK appears to play a key role in the regulation of SC migration and adhesion necessary for muscle regeneration.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Quinase 1 de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Músculo Esquelético/fisiologia , Paxilina/metabolismo , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Actinas/metabolismo , Animais , Fibronectinas/metabolismo , Imunofluorescência , Quinase 1 de Adesão Focal/antagonistas & inibidores , Músculo Esquelético/citologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolonas/farmacologia , Transdução de Sinais/fisiologia , Sulfonas/farmacologia , Sus scrofa , Suínos , Tirosina/metabolismo
20.
Oncotarget ; 7(21): 30597-609, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27121315

RESUMO

Nutrient absorption mediated by nutrient transporters expressed in the intestinal epithelium supplies substrates to support intestinal processes, including epithelial cell proliferation. We evaluated the role of Caudal type homeobox 2 (CDX2), an intestine-specific transcription factor, in the proliferation of pig intestinal epithelial cells (IPEC-1) and searched for novel intestinal nutrient transporter genes activated by CDX2. Our cloned pig CDX2 cDNA contains a "homeobox" DNA binding motif, suggesting it is a transcriptional activator. CDX2 overexpression in IPEC-1 cells increased cell proliferation, the percentage of cells in S/G2 phase, and the abundance of transcripts of the cell cycle-related genes Cyclin A2; Cyclin B; Cyclin D2; proliferating cell nuclear antigen; and cell cycle cyclin-dependent kinases 1, 2 and 4, as well as the predicted CDX2 target genes SLC1A1, SLC5A1 and SLC7A7. In addition, luciferase reporter and chromatin immunoprecipitation assays revealed that CDX2 binds directly to the SLC7A7 promoter. This is the first report of CDX2 function in pig intestinal epithelial cells and identifies SLC7A7 as a novel CDX2 target gene. Our findings show that nutrient transporters are activated during CDX2-induced proliferation of normal intestinal epithelial cells.


Assuntos
Sistema y+ de Transporte de Aminoácidos/genética , Fator de Transcrição CDX2/genética , Proliferação de Células/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Sequência de Aminoácidos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Fator de Transcrição CDX2/metabolismo , Linhagem Celular , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Feminino , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Masculino , Regiões Promotoras Genéticas/genética , Ligação Proteica , Homologia de Sequência de Aminoácidos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA