Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
2.
Bioresour Bioprocess ; 11(1): 13, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38647922

RESUMO

Aflatoxin B1 (AFB1) is extremely hepatotoxic, a causative agent of liver cancer, and can cause symptoms of acute or chronic liver damage. Chito-oligosaccharides (COS), obtained from the degradation of chitosan derived from shrimp and crab shells, is a natural antioxidant substance and its antitumor properties have been widely studied, but less research has been done on the prevention of AFB1-induced acute liver injury. In this study, rats were acutely exposed to 1 mg/kg BW AFB1 and simultaneously gavaged with different doses of COS for 8 days. The results showed that COS attenuated the hepatic histopathological changes and reduced serum biochemical indices (ALT, AST, ALP, and TBIL) in rats. It significantly inhibited MDA content and promoted SOD and GSH-Px activity production. Moreover, it also improved hepatocyte apoptosis. Furthermore, AFB1-vs-HCOS differential genes were enriched with 622 GO entries, and 380 were Biological Processes, 170 were Molecular Functions, 72 were Cellular Components. Differentially expressed genes (DEGs) analyzed by KEGG enrichment were more enriched in pathways, such as metabolism, PPAR signaling pathway, and peroxisome. Q-PCR technique verified that Lama5, Egr1, Cyp2b1, and Gadd45g in DEGs were associated with oxidative stress damage and apoptosis. In conclusion, COS intervention reduces the effect of AFB1 on hepatic genes and thus reduces the changes in hepatic gene function.

3.
Parkinsonism Relat Disord ; 120: 106001, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38217954

RESUMO

AIMS: Parkinson's disease (PD), as the second most common neurodegenerative disorder, often presents diagnostic challenges in differentiation from other forms of Parkinsonism. Recent studies have reported an association between plasma glycoprotein nonmetastatic melanoma protein B (pGPNMB) and PD. METHODS: A retrospective study was conducted, comprising 401 PD patients, 111 multiple system atrophy (MSA) patients, 13 progressive supranuclear palsy (PSP) patients and 461 healthy controls from the Chinese Han population, with an assessment of pGPNMB levels. RESULTS: The study revealed that pGPNMB concentrations were significantly lower in PD and MSA patients compared to controls (area under the receiver operating characteristics curve (AUC) 0.62 and 0.74, respectively, P < 0.0001 for both), but no difference was found in PSP patients compared to controls (P > 0.05). Interestingly, the level of pGPNMB was significantly higher in PD patients than in MSA patients (AUC = 0.63, P < 0.0001). Furthermore, the study explored the association between pGPNMB levels and disease severity in PD and MSA patients, revealing a positive correlation in PD patients but not in MSA patients with both disease severity and cognitive impairment. CONCLUSION: This study successfully replicated prior findings, demonstrating an association between pGPNMB levels and disease severity, and also identified a correlation with cognitive impairment in PD patients of the Chinese Han population. Additionally, this study is the first to identify a significant difference in pGPNMB levels between MSA, PD, and normal controls. The data provide new evidence supporting the potential role of pGPNMB in the diagnosis and differential diagnosis of Parkinsonism.


Assuntos
Disfunção Cognitiva , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Paralisia Supranuclear Progressiva , Humanos , Doença de Parkinson/diagnóstico , Estudos Retrospectivos , Atrofia de Múltiplos Sistemas/diagnóstico , Paralisia Supranuclear Progressiva/diagnóstico , Disfunção Cognitiva/diagnóstico , Diagnóstico Diferencial , Glicoproteínas de Membrana
4.
Front Immunol ; 14: 1254753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954591

RESUMO

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease, of which the leading cause of death is cardiovascular disease (CVD). The levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c) in RA decrease especially under hyperinflammatory conditions. It is conflictive with the increased risk of CVD in RA, which is called "lipid paradox". The systemic inflammation may explain this apparent contradiction. The increased systemic proinflammatory cytokines in RA mainly include interleukin-6(IL-6)、interleukin-1(IL-1)and tumor necrosis factor alpha(TNF-α). The inflammation of RA cause changes in the subcomponents and structure of HDL particles, leading to a weakened anti-atherosclerosis function and promoting LDL oxidation and plaque formation. Dysfunctional HDL can further worsen the abnormalities of LDL metabolism, increasing the risk of cardiovascular disease. However, the specific mechanisms underlying lipid changes in RA and increased CVD risk remain unclear. Therefore, this article comprehensively integrates the latest existing literature to describe the unique lipid profile of RA, explore the mechanisms of lipid changes, and investigate the impact of lipid changes on cardiovascular disease.


Assuntos
Artrite Reumatoide , Doenças Cardiovasculares , Dislipidemias , Humanos , Doenças Cardiovasculares/etiologia , Inflamação , LDL-Colesterol , Fator de Necrose Tumoral alfa/metabolismo
5.
Angew Chem Int Ed Engl ; 62(43): e202311336, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37670537

RESUMO

Rational design and engineering of high-performance molecular sieve membranes towards C2 H4 /C2 H6 and flue gas separations remain a grand challenge to date. In this study, through combining pore micro-environment engineering with meso-structure manipulation, highly c-oriented sub-100 nm-thick Cu@NH2 -MIL-125 membrane was successfully prepared. Coordinatively unsaturated Cu ions immobilized in the NH2 -MIL-125 framework enabled high-affinity π-complexation interactions with C2 H4 , resulting in an C2 H4 /C2 H6 selectivity approaching 13.6, which was 9.4 times higher than that of pristine NH2 -MIL-125 membrane; moreover, benefiting from π-complexation interactions between CO2 and Cu(I) sites, our membrane displayed superior CO2 /N2 selectivity of 43.2 with CO2 permeance of 696 GPU, which far surpassed the benchmark of other pure MOF membranes. The above multi-scale structure optimization strategy is anticipated to present opportunities for significantly enhancing the separation performance of diverse molecular sieve membranes.

6.
Nat Commun ; 14(1): 3973, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407547

RESUMO

Cyclic peptides have attracted tremendous attention in the pharmaceutical industry owing to their excellent cell penetrability, stability, thermostability, and drug-like properties. However, the currently available facile methodologies for creating such peptides are rather limited. Herein, we report an efficient and direct peptide cyclization via rhodium(III)-catalyzed C(7)-H maleimidation. Notably, this catalytical system has excellent regioselectivity and high tolerance of functional groups which enable late-stage cyclization of peptides. This architecture of cyclic peptides exhibits higher bioactivity than its parent linear peptides. Moreover, the Trp-substituted maleimide displays excellent reactivity toward Michael addition, indicating its potential as a click functional group for applications in chemical biology and medicinal chemistry. As a proof of principle, RGD-GFLG-DOX, which is a peptide-drug-conjugate, is constructed and it displays a strong binding affinity and high antiproliferative activity toward integrin-αvß3 overexpressed cancer cell lines. The proposed strategy for rapid preparation of stapled peptides would be a robust tool for creating peptide-drug conjugates.


Assuntos
Neoplasias , Triptofano , Humanos , Triptofano/metabolismo , Peptídeos/metabolismo , Peptídeos Cíclicos/química , Ciclização
7.
Transl Cancer Res ; 12(2): 413-420, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36915584

RESUMO

Background: Tumor-induced osteomalacia (TIO) is a rare, tumor-induced, metabolic bone disorder, the exact incidence of which is unknown. The most common cause of TIO is hypersecretion of tumor-derived fibroblast growth factor 23 (FGF23). Surgical resection can cure TIO in most cases, while for patients with TIO who are ineligible for surgery, biologic antibodies targeting FGF23 can be used as treatment. However, the diagnosis of TIO is more difficult than its treatment as the initial presentation can be misleading or nonspecific; thus, diagnosing TIO remains a clinical challenge. Case Description: Herein, we present a case of TIO originating from the nasal cavity neoplasm in which the patient also had a rare, thymic-derived, tumorous lesion. A diagnosis of osteoporosis was subsequently made, and a disorder of phosphorus metabolism was discovered. After determining that the patient was exhibiting signs of TIO, we used gallium-68 dotatate positron emission tomography/computed tomography (68Ga-DOTATATE PET/CT) to locate the tumor position. Conclusions: This case report emphasizes the importance of electrolyte testing, which is potentially helpful for quickly identifying the presence of disorders of phosphorus metabolism in suspected patients. Subsequently, appropriate imaging techniques (e.g., 68Ga-DOTATATE PET/CT) should be used to identify potential TIO lesions. Most patients with TIO can be treated successfully following diagnosis. Keywords: Tumor-induced osteomalacia (TIO); gallium-68 dotatate positron emission tomography/computed tomography (68Ga-DOTATATE PET/CT); phosphaturic mesenchymal tumor (PMTs); weakness; case report.

8.
Front Mol Biosci ; 10: 1140325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950522

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies worldwide and the second leading cause of cancer-related death. In recent years, the relationship between gut microbiota and CRC has attracted increasing attention from researchers. Studies reported that changes in the composition of gut microbiota, such as increase in the number of Fusobacterium nucleatum and Helicobacter hepaticus, impair the immune surveillance by affecting the intestinal mucosal immunity and increase the risk of tumor initiation and progression. The tumor microenvironment is the soil for tumor survival. Close contacts between gut microbiota and the tumor microenvironment may directly affect the progression of tumors and efficacy of antitumor drugs, thus influencing the prognosis of patients with CRC. Recently, many studies have shown that traditional Chinese medicine can safely and effectively improve the efficacy of antitumor drugs, potentially through remodeling of the tumor microenvironment by regulated gut microbiota. This article describes the effect of gut microbiota on the tumor microenvironment and possible mechanisms concerning the initiation and progression of CRC, and summarizes the potential role of traditional Chinese medicine.

9.
Angew Chem Int Ed Engl ; 62(15): e202216697, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36790362

RESUMO

Concurrent regulation of crystallographic orientation and thickness of zirconium metal-organic framework (Zr-MOF) membranes is challenging but promising for their performance enhancement. In this study, we pioneered the fabrication of uniform triangular-shaped, 40 nm thick UiO-66 nanosheet (NS) seeds by employing an anisotropic etching strategy. Through innovating confined counter-diffusion-assisted epitaxial growth, highly (111)-oriented 165 nm-thick UiO-66 membrane was prepared. The significant reduction in thickness and diffusion barrier in the framework endowed the membrane with unprecedented CO2 permeance (2070 GPU) as well as high CO2 /N2 selectivity (35.4), which surpassed the performance limits of state-of-the-art polycrystalline MOF membranes. In addition, highly (111)-oriented 180 nm-thick NH2 -UiO-66 membrane showing superb H2 /CO2 separation performance with H2 permeance of 1230 GPU and H2 /CO2 selectivity of 41.3, was prepared with the above synthetic procedure.

10.
Clin Oral Implants Res ; 34(4): 297-311, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36691814

RESUMO

OBJECTIVES: Our previous studies showed that strontium (Sr)-modified sand-blasted, large grit, acid etched titanium surface (Sr-SLA) is beneficial for osseointegration; however, the supporting mechanisms have not been explored in detail. MATERIALS AND METHODS: Whole-transcriptome RNA sequencing of peri-implant bone tissue was performed, and CDH2 was selected as a key mediator of Sr-SLA-mediated osseointegration. To test this hypothesis, a lentivirus-mediated vector targeting the silencing of the CDH2 gene was used in mesenchymal stem cells (MSCs) prior to seeding on Ti substrates. The effects of CDH2 interference on MSCs vitality, differentiation, and ß-catenin signaling activity were evaluated. In vivo, a recombinant adeno-associated virus 9 vector carrying an artificial siRNA that target CDH2 (AAV9-CDH2i) was intravenously injected in mice, followed by tibial surgery with implant placement. Osseointegration were monitored using micro-CT analysis. RESULTS: CDH2 expression in MSCs on Sr-SLA was higher than the control group, which was in parallel with the enhanced cell migration, adhesion, and upregulation of early osteogenic markers. Knocking down CDH2 in MSCs resulted in decreased cell viability and osteogenic differentiation, and the elevated biocompatibility and osteoinductive effect of Sr-SLA were greatly diminished. Surprisingly, Sr-SLA-induced upregulation of CDH2 was not followed by restriction of ß-catenin signaling because Sr-SLA also promoted the expression and nuclear translocation of ß-catenin. Systemic administration of AAV9-CDH2i effectively knocked down CDH2 expression in bone marrow cells, and in turn, inhibited bone formation induced by Sr-SLA. CONCLUSIONS: The results indicated that CDH2 is required for Sr-SLA-mediated bone regeneration, which reveals a new mechanism to explain the osteoinductive effect of Sr-SLA. Thus, biomaterial modifications targeting CDH2 may help improve early osseointegration and bone healing.


Assuntos
Implantes Dentários , Células-Tronco Mesenquimais , Animais , Camundongos , beta Catenina/farmacologia , Diferenciação Celular , Osseointegração , Osteogênese , Estrôncio/farmacologia , Propriedades de Superfície , Titânio
11.
J Ethnopharmacol ; 301: 115802, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36209953

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Thousands of years of clinical practice in the treatment of joint-related diseases support the efficacy and safety of Wutou decoction (WTD). Nevertheless, the lack of pharmacological evidence and unclear mechanisms make it difficult for WTD to become a recognized complementary therapy for the treatment of rheumatoid arthritis (RA). AIM OF THE STUDY: This study aimed to investigate the effect of WTD against synovial inflammation in RA and whether this effect depends on the regulation of macrophage polarization. MATERIALS AND METHODS: Sprague-Dawley rats were used to establish the collagen-induced arthritis (CIA) model. WTD with low and high doses was administered for 45 days. RAW264.7 cells were stimulated by lipopolysaccharide (LPS) or interleukin (IL)-4 to polarize M1 and M2 macrophages, which were pre-treated with WTD extract for 4 h. The anti-arthritic and anti-inflammatory effects of WTD were studied using arthritis score, histopathological staining, immunostaining, and enzyme-linked immunosorbent assay (ELISA). The polarization state of RAW264.7 cells and related pro/anti-inflammatory cytokines was detected by ELISA, reverse transcription quantitative polymerase chain reaction and western blotting. Western blotting and immunofluorescence were used to investigate the effect of WTD on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and peroxisome proliferator-activated receptors γ (PPARγ) activation both in vivo and in vitro. RESULTS: WTD significantly reduced the arthritis score and the pathological damage of the knee joint and decreased the expression of tumor necrosis factor alpha (TNF-α), IL-6 in serum, TNF-α, IL-1ß, monocyte chemoattractant protein-1 (MCP-1), and matrix metalloproteinase-3 (MMP3) in the knee synovium. WTD inhibited M1 type polarization and promoted M2 type polarization, both in vitro and in vivo, and reduced the expression of pro-inflammatory cytokines while increasing the expression of anti-inflammatory cytokines. Experiments showed that WTD inhibited the phosphorylation of NF-κB and downstream p38 in the synovium of CIA rats and LPS-induced M1 type polarized RAW264.7 cells. In addition, PPARγ expression in the synovium of CIA rats was mainly located in the cytoplasm, and WTD treatment increased the nuclear translocation of PPARγ, which was further verified in RAW264.7 cells. CONCLUSIONS: NF-κB and PPARγ regulating M1 and M2 macrophage polarization and subsequent secretion of pro-inflammatory and anti-inflammatory cytokines are the underlying mechanisms of WTD that ameliorate RA synovial inflammation.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Ratos , Anti-Inflamatórios , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Reumatoide/tratamento farmacológico , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Macrófagos , NF-kappa B/metabolismo , PPAR gama/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
12.
Medicine (Baltimore) ; 101(37): e30525, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36123941

RESUMO

A network pharmacology integrated molecular docking strategy was used to predict the underlying molecular mechanism of Ermiao san in the treatment of hyperuricemia and gout. Traditional Chinese medicine systems pharmacology (TCMSP) database and analysis platform were used to screen out the active compounds and their targets of Ermiao san. The disease target genes related to hyperuricemia (HUA) and gout were obtained by searching CTD, DisGeNET, DrugBank, GeneCards, OMIM, TTD, and PharmGKB databases with "Hyperuricemia" and "Gout" as keywords, respectively. The potential targets of Ermiao san in the treatment of HUA and gout were screened through a Venn diagram. The protein-protein interaction network was constructed using Cytoscape software. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were then conducted. Finally, some compounds and core targets were selected for molecular docking verification by Autodock Vina and Pymol software. Forty-six active compounds, such as quercetin, wogonin and beta-sitosterol, etc were identified. Ermiao san plays a therapeutic role in HUA and gout regulating various biological processes, cellular compounds, and molecular functions. The core targets of Ermiao san for treating HUA and gout are AT1 (namely Protein Kinase Bα), interleukin-1 beta, prostaglandin-endoperoxide synthase 2, JUN, etc. And the key pathways are nuclear factor-κB, interleukin-17 and tumor necrosis factor. The results of molecular docking analyses suggested that active compounds of Ermiao san could bind well to the core protein receptors. Ermiao san has a synergistic mechanism of multiple compounds, multiple targets, and multiple pathways in the treatment of HUA and gout, which provides a good theoretical basis for the clinical application.


Assuntos
Gota , Hiperuricemia , Medicamentos de Ervas Chinesas , Gota/tratamento farmacológico , Humanos , Hiperuricemia/tratamento farmacológico , Interleucina-17 , Interleucina-1beta , Simulação de Acoplamento Molecular , NF-kappa B , Farmacologia em Rede , Prostaglandina-Endoperóxido Sintases , Quercetina , Fatores de Necrose Tumoral
13.
Front Microbiol ; 13: 911757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783385

RESUMO

Aflatoxin B1 (AFB1) has mutagenesis, carcinogenesis and teratogenesis effects and mainly found in food crops and their processed foods. AFB1 exposure can cause acute or chronic liver poisoning, but there were few studies on the persistent effects of acute AFB1 exposure on the liver. In this study, rat liver injury models were established 2 and 7 days after single exposure to high and low doses of AFB1. The persistent effects of AFB1 single acute exposure (ASAE) on rat liver were analyzed from the phenotypic and genetic levels. The results showed that compared with the control group, liver function indexes, MDA content in liver and the number of apoptotic hepatocytes in model groups increased to the highest on the 2nd day after ASAE (p < 0.001). However, the changes of liver coefficient were most significant on the 7th day after ASAE (p < 0.01). The results of liver pathology showed that the liver injury was not alleviated and the activities of antioxidant enzymes GSH-Px and SOD were the lowest on the 7th day (p < 0.001). RNA-Seq results indicated that there were 236, 33, 679, and 78 significantly differentially expressed genes (DEGs) in the model groups (LA-2d, LA-7d, HA-2d, HA-7d) compared with the control group. Among them, the Gtse1 gene related to the proliferation, differentiation and metastasis of liver cancer cells, the Lama5 and Fabp4 gene related to the inflammatory response were significantly DEGs in the four model groups, and the differential expression of the immune system-related Bcl6 gene increased with the prolonged observation time after ASAE. In conclusion, ASAE can cause persistent liver damage in rats. The persistently affected genes Lama5, Gtse1, Fabp4, and Bcl6 possess the potential to be therapeutic targets for liver disease induced by AFB1.

14.
Small Methods ; 6(7): e2200139, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35587774

RESUMO

Diverse gases (NO, CO, H2 S, H2 , etc.) have been widely applied in the medical intervention of various diseases, including cancer, cardiovascular disease, ischemia-reperfusion injury, bacterial infection, etc., attributing to their inherent biomedical activities. Although many gases have many biomedical activities, their clinical use is still limited due to the rapid and free diffusion behavior of these gases molecules, which may cause potential side effects and/or ineffective treatment. Gas-generating nanoplatforms (GGNs) are effective strategies to address the aforementioned challenges of gas therapy by preventing gas production or release at nonspecific sites, enhancing GGNs accumulation at targeted sites, and controlling gas release in response to exogenous (UV, NIR, US, etc.) or endogenous (H2 O2 , GSH, pH, etc.) stimuli at the lesion site, further maintaining gas concentration within the effective range and achieving the purpose of disease treatment. This review comprehensively summarizes the advancements of "state-of-the-art" GGNs in the recent three years, with emphasis on the composition, structure, preparation process, and gas release mechanism of the nanocarriers. Furthermore, the therapeutic effects and limitations of GGNs in preclinical studies using cell/animal models are discussed. Overall, this review enlightens the further development of this field and promotes the clinical transformation of gas therapy.


Assuntos
Gases , Neoplasias , Animais , Gases/uso terapêutico , Neoplasias/tratamento farmacológico
15.
Angew Chem Int Ed Engl ; 61(26): e202203663, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35420737

RESUMO

Although having shown great promise for efficient gas separation, relevant study of Ti-MOF membranes remains very scarce, owing to limited Ti source types and uncertain factors which dominate the separation properties. In this work, we pioneered the use of the Ti8 (µ2 -O)8 (OOCC6 H5 )16 cluster as the Ti source of MIL-125 membranes, which led to lower reaction temperature and higher missing-linker number within the framework and therefore, enhanced CO2 /N2 adsorption selectivity. The MIL-125 membrane prepared by combining single-mode microwave heating with tertiary growth displayed an ideal CO2 /N2 selectivity of 38.7, which ranked the highest among all pristine pure MOF membranes measured under comparable conditions. In addition, the ideal H2 /N2 and H2 /CH4 selectivity was as high as 64.9 and 40.7, thus showing great promise for versatile utility in gas separation.

16.
Nat Commun ; 13(1): 2272, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477937

RESUMO

Class B1 of G protein-coupled receptors (GPCRs) comprises 15 members activated by physiologically important peptide hormones. Among them, vasoactive intestinal polypeptide receptor 2 (VIP2R) is expressed in the central and peripheral nervous systems and involved in a number of pathophysiological conditions, including pulmonary arterial hypertension, autoimmune and psychiatric disorders, in which it is thus a valuable drug target. Here, we report the cryo-electron microscopy structure of the human VIP2R bound to its endogenous ligand PACAP27 and the stimulatory G protein. Different from all reported peptide-bound class B1 GPCR structures, the N-terminal α-helix of VIP2R adopts a unique conformation that deeply inserts into a cleft between PACAP27 and the extracellular loop 1, thereby stabilizing the peptide-receptor interface. Its truncation or extension significantly decreased VIP2R-mediated cAMP accumulation. Our results provide additional information on peptide recognition and receptor activation among class B1 GPCRs and may facilitate the design of better therapeutics.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Peptídeo Intestinal Vasoativo , Microscopia Crioeletrônica , Humanos , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
17.
Brain Res ; 1785: 147879, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35278479

RESUMO

BACKGROUND: Parkinson's disease (PD) is a common neurodegenerative disorder that affects 1%-2% of the population over 60 years old. Immune response dysfunction in the brain contributes to the occurrence and development of PD. This study aimed to uncover the potential diagnostic genes for PD and characterize the immune cell infiltrates. METHODS: We downloaded the microarray data of patients with PD samples from the Gene Expression Omnibus (GEO) database. Weighted Gene Co-Expression Network Analysis (WGCNA) was used to identify the modules linked to PD in the GSE20163 dataset. Meanwhile, differentially expressed genes (DEGs) between the healthy control samples and PD samples were also identified. Then the PD-related genes were integrated based on the genes in the key module and DEGs. Functional enrichment analysis was used to explore the molecular mechanisms of these PD-related genes. Protein-protein interaction (PPI) network and least absolute shrinkage and selection operator (LASSO) analysis were used to further screen candidate genes for PD. Gene set enrichment analysis (GSEA) was applied to explore the biological functions of these candidate genes. The infiltration of immune cells was detected by single-sample gene set enrichment analysis (ssGSEA) algorithm in the GSE20163 dataset, and Pearson analysis was used to investigate the correlation of candidate genes with immune cells and immune checkpoint proteins. The expression of candidate genes in clinical samples was verified by qPCR. RESULTS: Altogether, we found a unique gene module related to PD, where 109 DEGs were identified in the GSE20163 dataset. Following these results, we screened 68 genes associated with PD. Gene Expression Omnibus (GEO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested that these genes were markedly enriched in the pathway of synthesis and transport of neurons. Three candidate genes (SLC18A2, CALB1, and SYNGR3) were further identified in PD patients through PPI network and LASSO analysis. The receiver operating characteristic (ROC) curve indicated that the three candidate genes had a good performance in distinguishing the PD samples from healthy control samples. The proportions of the aDC, DC, NK CD56dim cells, and follicular helper T cells (TFH) were obviously different between the healthy control and PD samples. Moreover, CTLA4, LAG3, CEACAM1, and CD27 were highly expressed in the PD group. GSEA analysis for candidate genes revealed that they were all closely related to the neurogenic disease. Additionally, the three candidate genes were all strongly correlated with the above immune cells and immune checkpoint proteins. The qPCR results validated the expression differences of SLC18A2 and SYNGR3 in the clinical PD and control samples. CONCLUSION: The three candidate genes may be a useful tool for diagnosing PD patients. These findings provide a reference for exploring new therapeutic targets and strategies for PD treatment.


Assuntos
Proteína Semelhante a ELAV 2/genética , Doença de Parkinson , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Humanos , Proteínas de Checkpoint Imunológico , Pessoa de Meia-Idade , Doença de Parkinson/genética
18.
J Ethnopharmacol ; 288: 114995, 2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35032584

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The dried flower bud of Syzygium aromaticum (L.) Merr. & L.M Perry (S. aromaticum) (Myrtaceae), also known as clove, was used in Traditional Chinese Medicine (TCM) to aid gastrointestinal function and treat stomach disorders including vomiting, flatulence and nausea. And it is a food homology medicine which is a promising candidate for H. pylori treatment. H. pylori is a Gram-negative bacterium that infects approximately 50% of the human population worldwide, which is closely related to multiple gastric diseases, including gastric cancer. However, there are still no sufficient studies on the anti-H. pylori activity of S. aromaticum, especially for the mechanism of action. AIM OF STUDY: This study aimed to study the antibacterial activities of S. aromaticum extracts on both antibiotic-sensitive and -resistant H. pylori strains, and to explore the underlying mechanisms of action. MATERIALS AND METHODS: The S. aromaticum extracts were obtained by heat reflux extraction and lyophilized to powder form. The phytochemical analyses were performed by High-performance liquid chromatography (HPLC) and UPLC-electrospray ionization mass spectrometry (ESI-MS). In vitro anti-H. pylori activity was evaluated by broth microdilution method. Mechanism of action studies included morphological observation using electron microscopy, determination of expression of virulence genes by reverse transcription quantitative polymerase chain reaction (RT-qPCR), genes expression profile identification by transcriptomic analysis, and exploration of anti-H. pylori infection mechanisms by network pharmacology analysis and western blotting validation. RESULTS: The S. aromaticum extracts, aqueous extract (AE) and 75% hydroalcoholic extract (HE), exerted significant antibacterial activities against both antibiotic-sensitive and -resistant H. pylori strains with MICs of 160∼320 µg/ml, without developing drug resistance. Among them, AE was bactericide to all the tested strains with MBCs of less than 4MIC, while HE was merely bacteriostatic to most of the tested strains with MBCs of 2MIC∼16MIC. Besides, they showed no antagonistic effects in combination with clarithromycin, metronidazole, levofloxacin, and amoxicillin. Additionally, these extracts altered the morphology and ultrastructure and down-regulated the virulence genes expression of H. pylori. And transcriptomic analysis showed that they regulated genes expression of multiple H. pylori biological processes, including tricarboxylic acid cycle (TAC) and pyruvate metabolic pathways. Furthermore, these extracts combated the abnormal activation of PI3K-Akt and MAPK signaling pathways caused by H. pylori infection. CONCLUSIONS: Overall, the present study firstly analyzed the chemical compositions of S. aromaticum extracts, and then confirmed their activities on both antibiotic-sensitive and -resistant H. pylori strains. In addition, the mechanisms of action of S. aromaticum extracts against H. pylori were found to be destroying the bacterial structure, down-regulating the expression of virulence genes, and interfering TAC and pyruvate metabolic pathways. Finally, S. aromaticum extracts were found to combated the abnormal activation of PI3K-Akt and MAPK signaling pathways to treat H. pylori infection. This study should accelerate further research and application of S. aromaticum against H. pylori infection.


Assuntos
Antibacterianos/farmacologia , Helicobacter pylori/efeitos dos fármacos , Extratos Vegetais/farmacologia , Syzygium/química , Antibacterianos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , Humanos , Testes de Sensibilidade Microbiana , Farmacologia em Rede , Espectrometria de Massas por Ionização por Electrospray , Virulência/genética
19.
Phytomedicine ; 94: 153844, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34785413

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a widespread cancer with high morbidity and mortality. Chemoresistance and metastasis are the current challenges for CRC treatment. Sanguisorba officinalis Linn. (called DiYu in Chinese, DY) is a traditional Chinese medicine (TCM) whose root is long used as medicinal part. In our previous study, the aqueous extract of DY could inhibit the Wnt/ß-catenin pathway and showed great antitumor effect against CRC. The Wnt/ß-catenin pathway is involved in CRC chemoresistance and metastasis. However, there is little study on the antitumor and antimetastatic effects of DY on resistant CRC cells. The aim of this study is to explore the effect of aqueous extract of DY on the growth and metastasis of 5-fluorouracil (5-FU) sensitive and resistant CRC, and to elucidate the underlying molecular mechanism. METHODOLOGY: In this study, cell viability, cell colony formation and apoptosis analyses were performed to verify the in vitro antitumor effect of DY on 5-FU-sensitive and -resistant CRC cells. Next, transwell assays were used to test the inhibition activity of DY on CRC migration and invasion. Western Blotting assays were carried out to identify the molecular mechanism underlying the efficacy of DY extract. Xenograft CRC nude mice model and tumor metastasis model were used to confirm the in vivo antitumor and antimetastatic effects of DY. RESULTS: DY inhibited cell proliferation and apoptosis via the upregulation of Bax, cleaved-caspase3 and cleaved-PARP proteins and downregulation of Bcl-2 protein. DY also inhibited cell migration and invasion via the downregulation of N-cadherin, vimentin and snail proteins and upregulation of E-cadherin protein, demonstrating that DY suppressed cell metastasis by reversing epithelial-to-mesenchymal transition (EMT) procession. Moreover, the protein expression levels of ß-catenin in whole cell, cytoplasm and nucleus were decreased after DY treatment. Taken together, DY suppressed CRC cell growth and metastasis via inhibition of the Wnt pathway. Additionally, DY also demonstrated effective antitumor and anti-metastasis activities in vivo. CONCLUSIONS: In conclusion, DY suppressed the growth and metastasis of 5-FU-sensitive and -resistant CRC via inhibition of the Wnt pathway, which indicated that DY could be a potential drug to treat CRC patients and improve clinic outcome.


Assuntos
Neoplasias Colorretais , Sanguisorba , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Transição Epitelial-Mesenquimal , Fluoruracila/farmacologia , Humanos , Camundongos , Camundongos Nus , Via de Sinalização Wnt , beta Catenina/metabolismo
20.
Front Med (Lausanne) ; 8: 762247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805229

RESUMO

Immune checkpoint inhibitors (ICIs), which can enhance antitumor immunity and inhibit cancer growth, have revolutionized the treatment of multiple cancers and dramatically decreased mortality. However, treatment with ICIs is directly associated with immune-related adverse events (irAEs) because of inflammation in off-target organs and autoimmunity resulting from non-specific immune activation. These irAEs can cause rheumatic diseases and manifestations such as inflammatory arthritis, polymyalgia rheumatica, myositis, vasculitis, Sicca and Sjogen's syndrome, and systemic lupus erythematosus. Early diagnosis and treatment of these adverse events will improve outcomes and quality of life for cancer patients. The treatment of rheumatic diseases induced by ICIs requires multidisciplinary cooperation among physicians. Furthermore, the underlying mechanisms are not fully understood and it is difficult to predict and evaluate these side effects precisely. In this review, we summarize available studies and findings about rheumatic irAEs, focusing mainly on the clinical manifestations, epidemiology, possible mechanisms, and guiding principles for treating these irAEs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA