Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Res ; 34(4): 281-294, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38200278

RESUMO

Plant survival requires an ability to adapt to differing concentrations of nutrient and toxic soil ions, yet ion sensors and associated signaling pathways are mostly unknown. Aluminum (Al) ions are highly phytotoxic, and cause severe crop yield loss and forest decline on acidic soils which represent ∼30% of land areas worldwide. Here we found an Arabidopsis mutant hypersensitive to Al. The gene encoding a leucine-rich-repeat receptor-like kinase, was named Al Resistance1 (ALR1). Al ions binding to ALR1 cytoplasmic domain recruits BAK1 co-receptor kinase and promotes ALR1-dependent phosphorylation of the NADPH oxidase RbohD, thereby enhancing reactive oxygen species (ROS) generation. ROS in turn oxidatively modify the RAE1 F-box protein to inhibit RAE1-dependent proteolysis of the central regulator STOP1, thus activating organic acid anion secretion to detoxify Al. These findings establish ALR1 as an Al ion receptor that confers resistance through an integrated Al-triggered signaling pathway, providing novel insights into ion-sensing mechanisms in living organisms, and enabling future molecular breeding of acid-soil-tolerant crops and trees, with huge potential for enhancing both global food security and forest restoration.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Alumínio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Íons , Solo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo
2.
J Integr Plant Biol ; 65(4): 934-949, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36515424

RESUMO

Cell wall is the first physical barrier to aluminum (Al) toxicity. Modification of cell wall properties to change its binding capacity to Al is one of the major strategies for plant Al resistance; nevertheless, how it is regulated in rice remains largely unknown. In this study, we show that exogenous application of putrescines (Put) could significantly restore the Al resistance of art1, a rice mutant lacking the central regulator Al RESISTANCE TRANSCRIPTION FACTOR 1 (ART1), and reduce its Al accumulation particularly in the cell wall of root tips. Based on RNA-sequencing, yeast-one-hybrid and electrophoresis mobility shift assays, we identified an R2R3 MYB transcription factor OsMYB30 as the novel target in both ART1-dependent and Put-promoted Al resistance. Furthermore, transient dual-luciferase assay showed that ART1 directly inhibited the expression of OsMYB30, and in turn repressed Os4CL5-dependent 4-coumaric acid accumulation, hence reducing the Al-binding capacity of cell wall and enhancing Al resistance. Additionally, Put repressed OsMYB30 expression by eliminating Al-induced H2 O2 accumulation, while exogenous H2 O2 promoted OsMYB30 expression. We concluded that ART1 confers Put-promoted Al resistance via repression of OsMYB30-regulated modification of cell wall properties in rice.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Alumínio/toxicidade , Putrescina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Parede Celular/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Raízes de Plantas/metabolismo
3.
Mol Plant ; 14(10): 1624-1639, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34116221

RESUMO

Iron (Fe) storage in plant seeds is not only necessary for seedling establishment following germination but is also a major source of dietary Fe for humans and other animals. Accumulation of Fe in seeds is known to be low during early seed development. However, the underlying mechanism and biological significance remain elusive. Here, we show that reduced expression of Arabidopsis YABBY transcription factor INNER NO OUTER (INO) increases embryonic Fe accumulation, while transgenic overexpression of INO results in the opposite effect. INO is highly expressed during early seed development, and decreased INO expression increases the expression of NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEIN 1 (NRAMP1), which encodes a transporter that contributes to seed Fe loading. The relatively high embryonic Fe accumulation conferred by decreased INO expression is rescued by the nramp1 loss-of-function mutation. We further demonstrated that INO represses NRAMP1 expression by binding to NRAMP1-specific promoter region. Interestingly, we found that excessive Fe loading into developing seeds of ino mutants results in greater oxidative damage, leading to increased cell death and seed abortion, a phenotype that can be rescued by the nramp1 mutation. Taken together, these results indicate that INO plays an important role in safeguarding reproduction by reducing Fe loading into developing seeds by repressing NRAMP1 expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ferro/metabolismo , Plântula/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/biossíntese , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Ferro/toxicidade , Regiões Promotoras Genéticas , Ligação Proteica , Reprodução , Plântula/genética , Plântula/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
4.
J Integr Plant Biol ; 62(8): 1193-1212, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32619040

RESUMO

Because Iron (Fe) is an essential element, Fe storage in plant seeds is necessary for seedling establishment following germination. However, the mechanisms controlling seed Fe storage during seed development remain largely unknown. Here we reveal that an ERF95 transcription factor regulates Arabidopsis seed Fe accumulation. We show that expression of ERF95 increases during seed maturation, and that lack of ERF95 reduces seed Fe accumulation, consequently increasing sensitivity to Fe deficiency during seedling establishment. Conversely, overexpression of ERF95 has the opposite effects. We show that lack of ERF95 decreases abundance of FER1 messenger RNA in developing seed, which encodes Fe-sequestering ferritin. Accordingly, a fer1-1 loss-of-function mutation confers reduced seed Fe accumulation, and suppresses ERF95-promoted seed Fe accumulation. In addition, ERF95 binds to specific FER1 promoter GCC-boxes and transactivates FER1 expression. We show that ERF95 expression in maturing seed is dependent on EIN3, the master transcriptional regulator of ethylene signaling. While lack of EIN3 reduces seed Fe content, overexpression of ERF95 rescues Fe accumulation in the seed of ein3 loss-of-function mutant. Finally, we show that ethylene production increases during seed maturation. We conclude that ethylene promotes seed Fe accumulation during seed maturation via an EIN3-ERF95-FER1-dependent signaling pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/farmacologia , Ferro/metabolismo , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Fatores de Transcrição/genética
5.
J Integr Plant Biol ; 62(8): 1176-1192, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31729146

RESUMO

Modification of cell wall properties has been considered as one of the determinants that confer aluminum (Al) tolerance in plants, while how cell wall modifying processes are regulated remains elusive. Here, we present a WRKY transcription factor WRKY47 involved in Al tolerance and root growth. Lack of WRKY47 significantly reduces, while overexpression of it increases Al tolerance. We show that lack of WRKY47 substantially affects subcellular Al distribution in the root, with Al content decreased in apoplast and increased in symplast, which is attributed to the reduced cell wall Al-binding capacity conferred by the decreased content of hemicellulose I in the wrky47-1 mutant. Based on microarray, real time-quantitative polymerase chain reaction and chromatin immunoprecipitation assays, we further show that WRKY47 directly regulates the expression of EXTENSIN-LIKE PROTEIN (ELP) and XYLOGLUCAN ENDOTRANSGLUCOSYLASE-HYDROLASES17 (XTH17) responsible for cell wall modification. Increasing the expression of ELP and XTH17 rescued Al tolerance as well as root growth in wrky47-1 mutant. In summary, our results demonstrate that WRKY47 is required for root growth under both normal and Al stress conditions via direct regulation of cell wall modification genes, and that the balance of Al distribution between root apoplast and symplast conferred by WRKY47 is important for Al tolerance.


Assuntos
Adaptação Fisiológica/genética , Alumínio/toxicidade , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Parede Celular/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Fatores Genéricos de Transcrição/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Parede Celular/efeitos dos fármacos , Mutação/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , Regiões Promotoras Genéticas/genética , Frações Subcelulares/metabolismo , Fatores Genéricos de Transcrição/genética
6.
Plant J ; 79(5): 810-23, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24946881

RESUMO

Although seed dormancy is an important agronomic trait, its molecular basis is poorly understood. ABSCISIC ACID INSENSITIVE 3 (ABI3) plays an essential role in the establishment of seed dormancy. Here, we show that the lack of a seed-expressed WRKY transcription factor, WRKY41, confers reduced primary seed dormancy and thermoinhibition, phenotypes resembling those for a lack of ABI3. Loss-of-function abi3-17 and wrky41 alleles also both confer reduced sensitivity to ABA during germination and early seedling growth. Absence of WRKY41 decreases ABI3 transcript abundance in maturing and imbibed seeds, whereas transgenically overexpressing WRKY41 increases ABI3 expression. Moreover, transgenic overexpression of ABI3 completely restores seed dormancy phenotypes on wrky41. ChIP-qPCR and EMSA reveal that WRKY41 binds directly to the ABI3 promoter through three adjacent W-boxes, and a transactivation assay indicates that these W-boxes are essential for ABI3 expression. Whilst RT-qPCR analysis shows that the regulation of ABI3 by WRKY41 is not through ABA and other factors known to promote ABI3 transcription during seed maturation and germination, we also show that high concentrations of ABA might promote negative feedback regulation of WRKY41 expression. Finally, analysis of the wrky41 aba2 double mutant confirms that WRKY41 and ABA collaboratively regulate ABI3 expression and seed dormancy. In summary, our results demonstrate that WRKY41 is an important regulator of ABI3 expression, and hence of seed dormancy.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Genes Reporter , Germinação , Mutação , Fenótipo , Dormência de Plantas , Folhas de Planta/genética , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Plântula/genética , Plântula/fisiologia , Sementes/genética , Sementes/fisiologia , Transdução de Sinais , Nicotiana/genética , Nicotiana/fisiologia , Fatores de Transcrição/metabolismo
7.
Plant J ; 76(5): 825-35, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118304

RESUMO

Aluminum (Al) toxicity is the major limiting factor for crop production on acid soils, but the transcriptional regulation of Al tolerance genes is largely unknown. Here, we found that the expression of a WRKY domain-containing transcription factor WRKY46 is inhibited by Al and expressed in root stele, whereas the expression of ALMT1, which encodes a malate efflux transporter, is induced by Al stress and spatially co-localized with WRKY46 in root stele, indicating the possible interaction between WRKY46 and ALMT1 in Arabidopsis. Mutation of WRKY46 by T-DNA insertion leads to better root growth under Al stress, and lower root Al content compared with the wild-type Col-0. The wrky46 mutant shows increased root malate secretion, which is consistent with the higher ALMT1 expression in the mutant. Transient expression analysis using truncated promoter of ALMT1 showed that ALMT1 expression can be inhibited by WRKY46 in tobacco leaves. The yeast one-hybrid assay and ChIP-qPCR analysis revealed that WRKY46 directly binds to ALMT1 promoter through specific W-boxes. Taken together, we demonstrated that WRKY46 is a negative regulator of ALMT1, mutation of WRKY46 leads to increased malate secretion and reduced Al accumulation in root apices, and thus confers higher Al resistance.


Assuntos
Alumínio/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Malatos/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Transportadores de Ânions Orgânicos/metabolismo , Exsudatos de Plantas/metabolismo , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA