Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Front Oncol ; 12: 811197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35174088

RESUMO

OBJECTIVES: To investigate the value of morphological feature and signal intensity ratio (SIR) derived from conventional magnetic resonance imaging (MRI) in distinguishing primary central nervous system lymphoma (PCNSL) from atypical glioblastoma (aGBM). METHODS: Pathology-confirmed PCNSLs (n = 93) or aGBMs (n = 48) from three institutions were retrospectively enrolled and divided into training cohort (n = 98) and test cohort (n = 43). Morphological features and SIRs were compared between PCNSL and aGBM. Using linear discriminant analysis, multiple models were constructed with SIRs and morphological features alone or jointly, and the diagnostic performances were evaluated via receiver operating characteristic (ROC) analysis. Areas under the curves (AUCs) and accuracies (ACCs) of the models were compared with the radiologists' assessment. RESULTS: Incision sign, T2 pseudonecrosis sign, reef sign and peritumoral leukomalacia sign were associated with PCNSL (training and overall cohorts, P < 0.05). Increased T1 ratio, decreased T2 ratio and T2/T1 ratio were predictive of PCNSL (all P < 0.05). ROC analysis showed that combination of morphological features and SIRs achieved the best diagnostic performance for differentiation of PCNSL and aGBM with AUC/ACC of 0.899/0.929 for the training cohort, AUC/ACC of 0.794/0.837 for the test cohort and AUC/ACC of 0.869/0.901 for the overall cohort, respectively. Based on the overall cohort, two radiologists could distinguish PCNSL from aGBM with AUC/ACC of 0.732/0.724 for radiologist A and AUC/ACC of 0.811/0.829 for radiologist B. CONCLUSION: MRI morphological features can help differentiate PCNSL from aGBM. When combined with SIRs, the diagnostic performance was better than that of radiologists' assessment.

2.
J Comput Assist Tomogr ; 46(1): 124-130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35099144

RESUMO

PURPOSE: This study aimed to investigate the value of magnetic resonance (MR) characteristics in differentiating the subtypes of growth hormone pituitary adenomas. MATERIALS AND METHODS: The clinical and MR imaging data of 70 patients with growth hormone pituitary adenoma confirmed by surgery and pathology were retrospectively analyzed. The tumors were divided into dense granular (DG; 36 cases) and sparse granular subtypes (SG; 34 cases). The tumors' MR features were analyzed, including the mean and maximum diameters, T2 signal intensity, T2 relative signal intensity (rSI), homogeneity, enhancement degree, and invasiveness (Knosp grade). Mann-Whitney U test and χ2 test were used to analyze MR characteristics between the 2 groups. The independent predictors and predictive probabilities of tumor subtypes were obtained via a logistic regression model, and the efficacy was compared by receiver operating characteristic curve. RESULTS: The mean and maximum diameters of growth hormone adenoma in DG and SG were 1.77 versus 2.45 and 1.95 versus 3.00 cm (median, P < 0.05), respectively. There was a significant difference between the 2 groups in T2 signal intensity and rSI (P values were 0.02 and 0.001, respectively). Most DG adenomas (86.1%) appeared as hypointense on T2 images, and 38.2% of SG adenomas were hyperintense. There was no significant difference in tumor homogeneity (P = 0.622). A significant difference was found in the Knosp grade between the 2 subtypes (P = 0.004). In addition, the enhancement degree of SG adenomas was significantly higher than that of DG adenomas (P = 0.001). Logistic regression analysis showed that high T2 rSI value and marked contrast enhancement were independent predictors of the 2 subtypes, and the odds ratios were 4.811 and 4.649, respectively. The multivariate logistic model obtained relatively high predicting efficacy, and the area under the curve, sensitivity, and specificity were 0.765, 0.882, and 0.500, respectively. CONCLUSIONS: There are significant differences in tumor size, T2 signal intensity, T2 rSI, enhancement degree, and invasiveness between DG and SG adenomas. The logistic model based on the marked contrast enhancement and high T2 rSI value has an important value in predicting the subtype of growth hormone adenoma.


Assuntos
Adenoma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neoplasias Hipofisárias/diagnóstico por imagem , Adenoma/classificação , Adenoma/patologia , Adulto , Feminino , Hormônio do Crescimento/sangue , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Hipófise/diagnóstico por imagem , Neoplasias Hipofisárias/classificação , Neoplasias Hipofisárias/patologia , Estudos Retrospectivos
3.
Eur Radiol ; 32(1): 194-204, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34215941

RESUMO

OBJECTIVES: The amount and distribution of intratumoural collagen fibre vary among different thymic tumours, which can be clearly detected with T2- and diffusion-weighted MR images. To explore the incidences of collagen fibre patterns (CFPs) among thymomas, thymic carcinomas and lymphomas on imaging, and to evaluate the efficacy and reproducibility of CFPs in differential diagnosis of thymic tumours. MATERIALS AND METHODS: Three hundred and ninety-eight patients with pathologically diagnosed thymoma, thymic carcinoma and lymphoma who underwent T2- and diffusion-weighted MR imaging were retrospectively enrolled. CFPs were classified into four categories: septum sign, patchy pattern, mixed pattern and no septum sign. The incidences of CFPs were compared among different thymic tumours, and the efficacy and reproducibility in differentiating the defined tumour types were analysed. RESULTS: There were significant differences in CFPs among thymomas, thymic squamous cell carcinomas (TSCCs), other thymic carcinomas and neuroendocrine tumours (OTC&NTs) and thymic lymphomas. Septum signs were found in 209 (86%) thymomas, which differed between thymomas and any other thymic neoplasms (all p < 0.005). The patchy, mixed patterns and no septum sign were mainly seen in TSCCs (80.3%), OTC&NTs (78.9%) and thymic lymphomas (56.9%), respectively. The consistency of different CFP evaluation between two readers was either good or excellent. CFPs achieved high efficacy in identifying the thymic tumours. CONCLUSION: The CFPs based on T2- and diffusion-weighted MR imaging were of great value in the differential diagnosis of thymic tumours. KEY POINTS: • Significant differences are found in intratumoural collagen fibre patterns among thymomas, thymic squamous cell carcinomas, other thymic carcinomas and neuroendocrine tumours and thymic lymphomas. • The septum sign, patchy pattern, mixed pattern and no septum sign are mainly seen in thymomas (86%), thymic squamous cell carcinomas (80.3%), other thymic carcinomas and neuroendocrine tumours (79%) and thymic lymphomas (57%), respectively. • The collagen fibre patterns have high efficacy and reproducibility in differentiating thymomas, thymic squamous cell carcinomas and thymic lymphomas.


Assuntos
Linfoma , Timoma , Neoplasias do Timo , Colágeno , Imagem de Difusão por Ressonância Magnética , Humanos , Linfoma/diagnóstico por imagem , Reprodutibilidade dos Testes , Estudos Retrospectivos , Timoma/diagnóstico por imagem , Neoplasias do Timo/diagnóstico por imagem
4.
Front Oncol ; 11: 640375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307124

RESUMO

OBJECTIVE: To explore the usefulness of texture signatures based on multiparametric magnetic resonance imaging (MRI) in predicting the subtypes of growth hormone (GH) pituitary adenoma (PA). METHODS: Forty-nine patients with GH-secreting PA confirmed by the pathological analysis were included in this retrospective study. Texture parameters based on T1-, T2-, and contrast-enhanced T1-weighted images (T1C) were extracted and compared for differences between densely granulated (DG) and sparsely granulated (SG) somatotroph adenoma by using two segmentation methods [region of interest 1 (ROI1), excluding the cystic/necrotic portion, and ROI2, containing the whole tumor]. Receiver operating characteristic (ROC) curve analysis was performed to determine the differentiating efficacy. RESULTS: Among 49 included patients, 24 were DG and 25 were SG adenomas. Nine optimal texture features with significant differences between two groups were obtained from ROI1. Based on the ROC analyses, T1WI signatures from ROI1 achieved the highest diagnostic efficacy with an AUC of 0.918, the accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 85.7, 72.0, 100.0, 100.0, and 77.4%, respectively, for differentiating DG from SG. Comparing with the T1WI signature, the T1C signature obtained relatively high efficacy with an AUC of 0.893. When combining the texture features of T1WI and T1C, the radiomics signature also had a good performance in differentiating the two groups with an AUC of 0.908. In addition, the performance got in all the signatures from ROI2 was lower than those in the corresponding signature from ROI1. CONCLUSION: Texture signatures based on MR images may be useful biomarkers to differentiate subtypes of GH-secreting PA patients.

5.
Cureus ; 13(3): e14108, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33927922

RESUMO

Purpose The diagnosis of prostate transition zone cancer (PTZC) remains a clinical challenge due to their similarity to benign prostatic hyperplasia (BPH) on MRI. The Deep Convolutional Neural Networks (DCNNs) showed high efficacy in diagnosing PTZC on medical imaging but was limited by the small data size. A transfer learning (TL) method was combined with deep learning to overcome this challenge. Materials and methods A retrospective investigation was conducted on 217 patients enrolled from our hospital database (208 patients) and The Cancer Imaging Archive (nine patients). Using T2-weighted images (T2WIs) and apparent diffusion coefficient (ADC) maps, DCNN models were trained and compared between different TL databases (ImageNet vs. disease-related images) and protocols (from scratch, fine-tuning, or transductive transferring). Results PTZC and BPH can be classified through traditional DCNN. The efficacy of TL from natural images was limited but improved by transferring knowledge from the disease-related images. Furthermore, transductive TL from disease-related images had comparable efficacy to the fine-tuning method. Limitations include retrospective design and a relatively small sample size. Conclusion Deep TL from disease-related images is a powerful tool for an automated PTZC diagnostic system. In developing regions where only conventional MR scans are available, the accurate diagnosis of PTZC can be achieved via transductive deep TL from disease-related images.

6.
BMC Med Imaging ; 21(1): 17, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33535988

RESUMO

BACKGROUND: Based on conventional MRI images, it is difficult to differentiatepseudoprogression from true progressionin GBM patients after standard treatment, which isa critical issue associated with survival. The aim of this study was to evaluate the diagnostic performance of machine learning using radiomics modelfrom T1-weighted contrast enhanced imaging(T1CE) in differentiating pseudoprogression from true progression after standard treatment for GBM. METHODS: Seventy-sevenGBM patients, including 51 with true progression and 26 with pseudoprogression,who underwent standard treatment and T1CE, were retrospectively enrolled.Clinical information, including sex, age, KPS score, resection extent, neurological deficit and mean radiation dose, were also recorded collected for each patient. The whole tumor enhancementwas manually drawn on the T1CE image, and a total of texture 9675 features were extracted and fed to a two-step feature selection scheme. A random forest (RF) classifier was trained to separate the patients by their outcomes.The diagnostic efficacies of the radiomics modeland radiologist assessment were further compared by using theaccuracy (ACC), sensitivity and specificity. RESULTS: No clinical features showed statistically significant differences between true progression and pseudoprogression.The radiomic classifier demonstrated ACC, sensitivity, and specificity of 72.78%(95% confidence interval [CI]: 0.45,0.91), 78.36%(95%CI: 0.56,1.00) and 61.33%(95%CI: 0.20,0.82).The accuracy, sensitivity and specificity of three radiologists' assessment were66.23%(95% CI: 0.55,0.76), 61.50%(95% CI: 0.43,0.78) and 68.62%(95% CI: 0.55,0.80); 55.84%(95% CI: 0.45,0.66),69.25%(95% CI: 0.50,0.84) and 49.13%(95% CI: 0.36,0.62); 55.84%(95% CI: 0.45,0.66), 69.23%(95% CI: 0.50,0.84) and 47.06%(95% CI: 0.34,0.61), respectively. CONCLUSION: T1CE-based radiomics showed better classification performance compared with radiologists' assessment.The radiomics modelwas promising in differentiating pseudoprogression from true progression.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Idoso , Neoplasias Encefálicas/terapia , Meios de Contraste , Progressão da Doença , Feminino , Glioblastoma/terapia , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Doses de Radiação , Estudos Retrospectivos , Sensibilidade e Especificidade , Adulto Jovem
7.
Eur J Radiol ; 134: 109467, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33307462

RESUMO

PURPOSE: In populations without contrast enhancement, the imaging features of atypical brain parenchyma inflammations can mimic those of grade II gliomas. The aim of this study was to assess the value of the conventional MR-based radiomics signature in differentiating brain inflammation from grade II glioma. METHODS: Fifty-seven patients (39 patients with grade II glioma and 18 patients with inflammation) were divided into primary (n = 44) and validation cohorts (n = 13). Radiomics features were extracted from T1-weighted images (T1WI) and T2-weighted images (T2WI). Two-sample t-test and least absolute shrinkage and selection operator (LASSO) regression were adopted to select features and build radiomics signature models for discriminating inflammation from glioma. The predictive performance of the models was evaluated via area under the receiver operating characteristic curve (AUC) and compared with the radiologists' assessments. RESULTS: Based on the primary cohort, we developed T1WI, T2WI and combination (T1WI + T2WI) models for differentiating inflammation from glioma with 4, 8, and 5 radiomics features, respectively. Among these models, T2WI and combination models achieved better diagnostic efficacy, with AUC of 0.980, 0.988 in primary cohort and that of 0.950, 0.925 in validation cohort, respectively. The AUCs of radiologist 1's and 2's assessments were 0.661 and 0.722, respectively. CONCLUSION: The signature based on radiomics features helps to differentiate inflammation from grade II glioma and improved performance compared with experienced radiologists, which could potentially be useful in clinical practice.


Assuntos
Encefalite , Glioma , Glioma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Curva ROC , Estudos Retrospectivos
8.
Front Neurosci ; 14: 144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153362

RESUMO

BACKGROUND: To compare the efficacies of univariate and radiomics analyses of amide proton transfer weighted (APTW) imaging in predicting isocitrate dehydrogenase 1 (IDH1) mutation of grade II/III gliomas. METHODS: Fifty-nine grade II/III glioma patients with known IDH1 mutation status were prospectively included (IDH1 wild type, 16; IDH1 mutation, 43). A total of 1044 quantitative radiomics features were extracted from APTW images. The efficacies of univariate and radiomics analyses in predicting IDH1 mutation were compared. Feature values were compared between two groups with independent t-test and receiver operating characteristic (ROC) analysis was applied to evaluate the predicting efficacy of each feature. Cases were randomly assigned to either the training (n = 49) or test cohort (n = 10) for the radiomics analysis. Support vector machine with recursive feature elimination (SVM-RFE) was adopted to select the optimal feature subset. The adverse impact of the imbalance dataset in the training cohort was solved by synthetic minority oversampling technique (SMOTE). Subsequently, the performance of SVM model was assessed on both training and test cohort. RESULTS: As for univariate analysis, 18 features were significantly different between IDH1 wild-type and mutant groups (P < 0.05). Among these parameters, High Gray Level Run Emphasis All Direction offset 8 SD achieved the biggest area under the curve (AUC) (0.769) with the accuracy of 0.799. As for radiomics analysis, SVM model was established using 19 features selected with SVM-RFE. The AUC and accuracy for IDH1 mutation on training set were 0.892 and 0.952, while on the testing set were 0.7 and 0.84, respectively. CONCLUSION: Radiomics strategy based on APT image features is potentially useful for preoperative estimating IDH1 mutation status.

9.
BMC Neurol ; 20(1): 48, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32033580

RESUMO

BACKGROUND: The medical imaging to differentiate World Health Organization (WHO) grade II (ODG2) from III (ODG3) oligodendrogliomas still remains a challenge. We investigated whether combination of machine leaning with radiomics from conventional T1 contrast-enhanced (T1 CE) and fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) offered superior efficacy. METHODS: Thirty-six patients with histologically confirmed ODGs underwent T1 CE and 33 of them underwent FLAIR MR examination before any intervention from January 2015 to July 2017 were retrospectively recruited in the current study. The volume of interest (VOI) covering the whole tumor enhancement were manually drawn on the T1 CE and FLAIR slice by slice using ITK-SNAP and a total of 1072 features were extracted from the VOI using 3-D slicer software. Random forest (RF) algorithm was applied to differentiate ODG2 from ODG3 and the efficacy was tested with 5-fold cross validation. The diagnostic efficacy of radiomics-based machine learning and radiologist's assessment were also compared. RESULTS: Nineteen ODG2 and 17 ODG3 were included in this study and ODG3 tended to present with prominent necrosis and nodular/ring-like enhancement (P < 0.05). The AUC, ACC, sensitivity, and specificity of radiomics were 0.798, 0.735, 0.672, 0.789 for T1 CE, 0.774, 0.689, 0.700, 0.683 for FLAIR, as well as 0.861, 0.781, 0.778, 0.783 for the combination, respectively. The AUCs of radiologists 1, 2 and 3 were 0.700, 0.687, and 0.714, respectively. The efficacy of machine learning based on radiomics was superior to the radiologists' assessment. CONCLUSIONS: Machine-learning based on radiomics of T1 CE and FLAIR offered superior efficacy to that of radiologists in differentiating ODG2 from ODG3.


Assuntos
Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Oligodendroglioma/patologia , Adolescente , Adulto , Idoso , Algoritmos , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiologistas , Estudos Retrospectivos , Sensibilidade e Especificidade , Organização Mundial da Saúde , Adulto Jovem
10.
Cancer Manag Res ; 11: 9989-10000, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31819632

RESUMO

PURPOSE: This study aims to incorporate informative histogram indicator analyses and advanced multimodal MRI parameters to differentiate low-grade gliomas (LGGs) from high-grade gliomas (HGGs) and to explore the features associated with patients' survival. PATIENTS AND METHODS: A total of 120 patients with pathologically confirmed LGGs or HGGs receiving conventional and advanced MRI such as three-dimensional arterial spin labeling (3D-ASL), intravoxel incoherent motion-diffusion weighted imaging (IVIM-DWI), and dynamic contrast-enhanced MRI (DCE-MRI) were included. The mean and histogram indicators from advanced MRI were calculated from the entire tumor. The efficacies of a single indicator or multiple parameters were tested in distinguishing HGGs from LGGs and predicting patients' survival. Receiver operating characteristic (ROC) curve and multivariable stepwise logistic regression were used to evaluate the diagnostic efficacies. Leave-one-out cross-validation was further used to validate the accuracy of the parameter sets in glioma grading. Log-rank test using the Kaplan-Meier curve was utilized to predict patients' survival. RESULTS: Overall, parameters from DCE-MRI performed better than those from 3D-ASL or IVIM-DWI in both glioma grading and survival prediction. The histogram metrics of Ve were demonstrated to have higher accuracies (the accuracies for Extended Tofts_Ve mean and Extended Tofts_Ve median were 68.33% and 71.67%, respectively, while those for the Incremental_Ve mean and Incremental_Ve 75th were 68.33% and 72.50%, respectively) in grading LGGs from HGGs. The combination of Tofts_Ve histogram metrics was the one with the highest accuracy (81.67%) and area under ROC curve (AUC = 0.840). On the other hand, Patlak_Ktrans 95th (AUC = 0.9265) and Extended Tofts_Ve 95th (AUC = 0.9154) performed better than their corresponding means (Patlak_Ktrans mean: AUC = 0.9118 and Extended Tofts_Ve mean: AUC = 0.9044) in predicting patients' overall survival (OS) at 18-month follow-up. CONCLUSION: DCE-MRI-derived histogram features from the entire tumor were promising metrics for glioma grading and OS prediction. Combining single modal histogram features improved glioma grading. TRIAL REGISTRATION: NCT02622620.

11.
J Orthop Surg Res ; 14(1): 123, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31072377

RESUMO

BACKGROUND: The incidence and radiological patterns of eosinophilic granuloma (EG) in China is not clear. We described the incidence, presentation, and imaging characteristics of Chinese EG patients in a tertiary hospital. METHODS: A retrospective chart review was performed from January 2004 to October 2017 at a single tertiary general hospital. Seventy-six patients were pathologically identified as EG. Besides, 60 patients with preoperative imaging diagnosis of "EG" were analyzed to reveal the radiological patterns and their diagnostic power. RESULTS: Fifty-three male and 23 female EG patients with a mean age of 18.1 ± 16.7 years (range 1-58 years) were retrospectively included. Significant differences were observed in gender (male to female = 2.3:1) and age (the highest incidence at the age of 0~5 years) for EG. EG predominantly involved the skeletal system: flat bones (31.43%) > irregular bones (24.76%) > long bones (22.86%) > other organs (20.95%). No obvious relationships between season, biochemical markers, and EG incidence were observed. The common presenting symptoms were pain followed with local mass, and most patients underwent surgical resection. Among 60 imagingly diagnosed "EG" patients from April 2009 to October 2017, only 22 were with histological confirmation. The correct diagnosis rates were 37.1% (13 out of 35), 16.7% (5 out of 30), and 22.2% (8 out of 36) for plain radiography, computed tomography (CT), and magnetic resonance imaging (MRI), respectively. CONCLUSIONS: Chinese EG has a varied presentation, age distribution, and gender difference. EG diagnosis is still based on biopsy or histopathology instead of imaging techniques.


Assuntos
Granuloma Eosinófilo/diagnóstico por imagem , Granuloma Eosinófilo/epidemiologia , Imageamento por Ressonância Magnética , Centros de Atenção Terciária , Tomografia Computadorizada por Raios X , Adolescente , Adulto , Criança , Pré-Escolar , China/epidemiologia , Estudos de Coortes , Feminino , Humanos , Incidência , Lactente , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Adulto Jovem
12.
J Magn Reson Imaging ; 49(5): 1263-1274, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30623514

RESUMO

BACKGROUND: Accurate glioma grading plays an important role in patient treatment. PURPOSE: To investigate the influence of varied texture retrieving models on the efficacy of grading glioma with support vector machine (SVM). STUDY TYPE: Retrospective. POPULATION: In all, 117 glioma patients including 25, 29, and 63 grade II, III, and IV gliomas, respectively, based on WHO 2007. FIELD STRENGTH/SEQUENCE: 3.0T MRI/ T1 WI, T2 fluid-attenuated inversion recovery, contrast enhanced T1 , arterial spinal labeling, diffusion-weighted imaging (0, 30, 50, 100, 200, 300, 500, 800, 1000, 1500, 2000, 3000, and 3500 sec/mm2 ), and dynamic contrast-enhanced. ASSESSMENT: Texture attributes from 30 parametric maps were retrieved using four models, including Global, gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and gray-level size-zone matrix (GLSZM). Attributes derived from varied models were input into radial basis function SVM (RBF-SVM) combined with attribute selection using SVM-recursive feature elimination (SVM-RFE). The SVM model was trained and established with 80% randomly selected data of each category using 10-fold crossvalidation. The model performance was further tested using the remaining 20% data. STATISTICAL TESTS: Ten-fold crossvalidation was used to validate the model performance. RESULTS: Based on 30 parametric maps, 90, 240, 390, or 390 texture attributes were retrieved using the Global, GLCM, GLRLM, or GLSZM model, respectively. SVM-RFE was able to reduce attribute redundancy as well as improve RBF-SVM performance. Training data were oversampled by applying the Synthetic Minority Oversampling Technique (SMOTE) method to overcome the data imbalance problem; test results were able to further demonstrate the classifying performance of the final models. GLSZM using gray-level 64 was the optimal model to retrieve powerful image texture attributes to produce enough classifying power with an accuracy / area under the curve of 0.760/0.867 for the training and 0.875/0.971 for the independent test. Fifteen attributes were selected with SVM-RFE to provide comparable classifying efficacy. DATA CONCLUSION: When using image textures-based SVM classification of gliomas, the GLSZM model in combination with gray-level 64 and attribute selection may be an optimized solution. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1263-1274.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Gradação de Tumores , Reprodutibilidade dos Testes , Estudos Retrospectivos , Máquina de Vetores de Suporte
13.
Front Neurosci ; 12: 804, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498429

RESUMO

Background: Accurate glioma grading before surgery is of the utmost importance in treatment planning and prognosis prediction. But previous studies on magnetic resonance imaging (MRI) images were not effective enough. According to the remarkable performance of convolutional neural network (CNN) in medical domain, we hypothesized that a deep learning algorithm can achieve high accuracy in distinguishing the World Health Organization (WHO) low grade and high grade gliomas. Methods: One hundred and thirteen glioma patients were retrospectively included. Tumor images were segmented with a rectangular region of interest (ROI), which contained about 80% of the tumor. Then, 20% data were randomly selected and leaved out at patient-level as test dataset. AlexNet and GoogLeNet were both trained from scratch and fine-tuned from models that pre-trained on the large scale natural image database, ImageNet, to magnetic resonance images. The classification task was evaluated with five-fold cross-validation (CV) on patient-level split. Results: The performance measures, including validation accuracy, test accuracy and test area under curve (AUC), averaged from five-fold CV of GoogLeNet which trained from scratch were 0.867, 0.909, and 0.939, respectively. With transfer learning and fine-tuning, better performances were obtained for both AlexNet and GoogLeNet, especially for AlexNet. Meanwhile, GoogLeNet performed better than AlexNet no matter trained from scratch or learned from pre-trained model. Conclusion: In conclusion, we demonstrated that the application of CNN, especially trained with transfer learning and fine-tuning, to preoperative glioma grading improves the performance, compared with either the performance of traditional machine learning method based on hand-crafted features, or even the CNNs trained from scratch.

14.
J Magn Reson Imaging ; 48(6): 1518-1528, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29573085

RESUMO

BACKGROUND: Accurate glioma grading plays an important role in the clinical management of patients and is also the basis of molecular stratification nowadays. PURPOSE/HYPOTHESIS: To verify the superiority of radiomics features extracted from multiparametric MRI to glioma grading and evaluate the grading potential of different MRI sequences or parametric maps. STUDY TYPE: Retrospective; radiomics. POPULATION: A total of 153 patients including 42, 33, and 78 patients with Grades II, III, and IV gliomas, respectively. FIELD STRENGTH/SEQUENCE: 3.0T MRI/T1 -weighted images before and after contrast-enhanced, T2 -weighted, multi-b-value diffusion-weighted and 3D arterial spin labeling images. ASSESSMENT: After multiparametric MRI preprocessing, high-throughput features were derived from patients' volumes of interests (VOIs). The support vector machine-based recursive feature elimination was adopted to find the optimal features for low-grade glioma (LGG) vs. high-grade glioma (HGG), and Grade III vs. IV glioma classification tasks. Then support vector machine (SVM) classifiers were established using the optimal features. The accuracy and area under the curve (AUC) was used to assess the grading efficiency. STATISTICAL TESTS: Student's t-test or a chi-square test were applied on different clinical characteristics to confirm whether intergroup significant differences exist. RESULTS: Patients' ages between LGG and HGG groups were significantly different (P < 0.01). For each patient, 420 texture and 90 histogram parameters were derived from 10 VOIs of multiparametric MRI. SVM models were established using 30 and 28 optimal features for classifying LGGs from HGGs and grades III from IV, respectively. The accuracies/AUCs were 96.8%/0.987 for classifying LGGs from HGGs, and 98.1%/0.992 for classifying grades III from IV, which were more promising than using histogram parameters or using the single sequence MRI. DATA CONCLUSION: Texture features were more effective for noninvasively grading gliomas than histogram parameters. The combined application of multiparametric MRI provided a higher grading efficiency. The proposed radiomic strategy could facilitate clinical decision-making for patients with varied glioma grades. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1518-1528.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Radiografia , Adulto , Algoritmos , Área Sob a Curva , Diagnóstico por Computador/métodos , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Gradação de Tumores , Reconhecimento Automatizado de Padrão , Curva ROC , Estudos Retrospectivos , Máquina de Vetores de Suporte , Adulto Jovem
15.
BMC Cancer ; 18(1): 215, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467012

RESUMO

BACKGROUND: The methylation status of oxygen 6-methylguanine-DNA methyltransferase (MGMT) promoter has been associated with treatment response in glioblastoma(GBM). Using pre-operative MRI techniques to predict MGMT promoter methylation status remains inconclusive. In this study, we investigated the value of features from structural and advanced imagings in predicting the methylation of MGMT promoter in primary glioblastoma patients. METHODS: Ninety-two pathologically confirmed primary glioblastoma patients underwent preoperative structural MR imagings and the efficacy of structural image features were qualitatively analyzed using Fisher's exact test. In addition, 77 of the 92 patients underwent additional advanced MRI scans including diffusion-weighted (DWI) and 3-diminsional pseudo-continuous arterial spin labeling (3D pCASL) imaging. Apparent diffusion coefficient (ADC) and relative cerebral blood flow (rCBF) values within the manually drawn region-of-interest (ROI) were calculated and compared using independent sample t test for their efficacies in predicting MGMT promoter methylation. Receiver operating characteristic curve (ROC) analysis was used to investigate the predicting efficacy with the area under the curve (AUC) and cross validations. Multiple-variable logistic regression model was employed to evaluate the predicting performance of multiple variables. RESULTS: MGMT promoter methylation was associated with tumor location and necrosis (P <  0.05). Significantly increased ADC value (P <  0.001) and decreased rCBF (P <  0.001) were associated with MGMT promoter methylation in primary glioblastoma. The ADC achieved the better predicting efficacy than rCBF (ADC: AUC, 0.860; sensitivity, 81.1%; specificity, 82.5%; vs rCBF: AUC, 0.835; sensitivity, 75.0%; specificity, 78.4%; P = 0.032). The combination of tumor location, necrosis, ADC and rCBF resulted in the highest AUC of 0.914. CONCLUSION: ADC and rCBF are promising imaging biomarkers in clinical routine to predict the MGMT promoter methylation in primary glioblastoma patients.


Assuntos
Neoplasias Encefálicas/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Glioblastoma/metabolismo , Imageamento por Ressonância Magnética , Proteínas Supressoras de Tumor/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Feminino , Glioblastoma/diagnóstico , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Curva ROC , Estudos Retrospectivos , Sensibilidade e Especificidade , Proteínas Supressoras de Tumor/genética , Adulto Jovem
16.
J Thorac Dis ; 10(12): 6794-6802, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30746224

RESUMO

BACKGROUND: Thymic epithelial tumors (TETs) are the most common primary thymus tumors, but neither the possible ethnical/regional differences in the incidence of TETs nor the inter-relationships among the clinical variables has been revealed in northwest China. METHODS: A retrospective chart review was performed among pathologically confirmed TET patients from January 2004 to December 2015 in a tertiary general hospital of northwest China and the incidence, clinical features and the inter-relationships among clinical variables were analyzed. RESULTS: A total of 603 pathologically confirmed TETs patients (age range, 5-78 years; 308 males) were enrolled and the most common lesion location was anterior mediastinum (98.5%), among them, 192 (31.8%) had myasthenia gravis (MG). Twenty-six (5.7%), 112 (24.6%), 83 (18.2%), 137 (30.1%), 74 (16.3%), and 23 (5.1%) patients fell into the World Health Organization (WHO) type A, AB, B1, B2, B3 and thymic carcinoma (TC), respectively. The incidence of TETs was slightly higher in the female population and the age group of 40-60 years old. In addition, MG predominantly coexisted with WHO types A-B3 TETs and the TETs with MG were smaller than those without MG. The correct diagnosis rates were 42.3% (77 out of 182), 61.1% (127 out of 208), 89.3% (250 out of 280) and 75.0% (3 out of 4) for chest X-ray, non-contrast computed tomography (CT), contrast CT scan and magnetic resonance imaging (MRI), respectively. CONCLUSIONS: Distinct gender and age differences exist in the incidence of TETs and the A-B3 TETs are closely related with MG. Contrast CT scan plays more important role in diagnosing TETs.

17.
Oncotarget ; 8(27): 44579-44592, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28574817

RESUMO

We evaluated the performance of intravoxel incoherent motion (IVIM) parameters for preoperatively predicting the subtype and Masaoka stage of thymic epithelial tumors (TETs). Seventy-seven patients with pathologically confirmed TETs underwent a diffusion weighted imaging (DWI) sequence with 9 b values. Differences in the slow diffusion coefficient (D), fast perfusion coefficient (D*), and perfusion fraction (f) IVIM parameters, as well as the multi b-value fitted apparent diffusion coefficient (ADCmb), were compared among patients with low-risk (LRT) and high-risk thymomas (HRT) and thymic carcinomas (TC), and between early stage (stages I and II) and advanced stage (stages III and IV) TET patients. ADCmb, D, and D* values were higher in the LRT group than in the HRT or TC group, but did not differ between the HRT and TC groups. The mean ADCmb, D, and D* values were higher in the early stage TETs group than the advanced stage TETs group. The f values did not differ among the groups. These results suggest that IVIM DWI could be used to preoperatively predict subtype and Masaoka stage in TET patients.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias Epiteliais e Glandulares/diagnóstico por imagem , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias do Timo/diagnóstico por imagem , Neoplasias do Timo/patologia , Adulto , Idoso , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Epiteliais e Glandulares/terapia , Variações Dependentes do Observador , Curva ROC , Reprodutibilidade dos Testes , Neoplasias do Timo/terapia , Adulto Jovem
18.
Oncotarget ; 8(29): 47816-47830, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28599282

RESUMO

Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/patologia , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Adulto , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Reprodutibilidade dos Testes
19.
BMC Med Imaging ; 17(1): 10, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28143434

RESUMO

BACKGROUND: Standard therapy for Glioblastoma multiforme (GBM) involves maximal safe tumor resection followed with radiotherapy and concurrent adjuvant temozolomide. About 20 to 30% patients undergoing their first post-radiation MRI show increased contrast enhancement which eventually recovers without any new treatment. This phenomenon is referred to as pseudoprogression. Differentiating tumor progression from pseudoprogression is critical for determining tumor treatment, yet this capacity remains a challenge for conventional magnetic resonance imaging (MRI). Thus, a prospective diagnostic trial has been established that utilizes multimodal MRI techniques to detect tumor progression at its early stage. The purpose of this trial is to explore the potential role of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and three-dimensional arterial spin labeling imaging (3D-ASL) in differentiating true progression from pseudoprogression of GBM. In addition, the diagnostic performance of quantitative parameters obtained from IVIM-DWI and 3D-ASL, including apparent diffusion coefficient (ADC), slow diffusion coefficient (D), fast diffusion coefficient (D*), perfusion fraction (f), and cerebral blood flow (CBF), will be evaluated. METHODS: Patients that recently received a histopathological diagnosis of GBM at our hospital are eligible for enrollment. The patients selected will receive standard concurrent chemoradiotherapy and adjuvant temozolomide after surgery, and then will undergo conventional MRI, IVIM-DWI, 3D-ASL, and contrast-enhanced MRI. The quantitative parameters, ADC, D, D*, f, and CBF, will be estimated for newly developed enhanced lesions. Further comparisons will be made with unpaired t-tests to evaluate parameter performance in differentiating true progression from pseudoprogression, while receiver-operating characteristic (ROC) analyses will determine the optimal thresholds, as well as sensitivity and specificity. Finally, relationships between these parameters will be assessed with Pearson's correlation and partial correlation analyses. DISCUSSION: The results of this study may demonstrate the potential value of using multimodal MRI techniques to differentiate true progression from pseudoprogression in its early stages to help decision making in early intervention and improve the prognosis of GBM. TRIAL REGISTRATION: This study has been registered at ClinicalTrials.gov ( NCT02622620 ) on November 18, 2015 and published on March 28, 2016.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Quimiorradioterapia/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Glioblastoma/patologia , Glioblastoma/terapia , Angiografia por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Progressão da Doença , Feminino , Glioblastoma/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal/métodos , Invasividade Neoplásica , Marcadores de Spin , Resultado do Tratamento
20.
Oncotarget ; 8(23): 37884-37895, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28039453

RESUMO

To compare the efficacy of ultra-high and conventional mono-b-value DWI for glioma grading, in 109 pathologically confirmed glioma patients, ultra-high apparent diffusion coefficient (ADCuh)was calculated using a tri-exponential mode, distributed diffusion coefficients (DDCs) and α values were calculated using a stretched-exponential model, and conventional ADC values were calculated using a mono-exponential model. The efficacy and reliability of parameters for grading gliomas were investigated using receiver operating characteristic (ROC) curve and intra-class correlation (ICC) analyses, respectively. The ADCuh values differed (P < 0.001) between low-grade gliomas (LGGs; 0.436 ×10-3 mm2/sec) and high-grade gliomas (HGGs; 0.285 × 10-3 mm2/sec). DDC, a and various conventional ADC values were smaller in HGGs (all P ≤ 0.001, vs. LGGs). The ADCuh parameter achieved the highest diagnostic efficacy with an area under curve (AUC) of 0.993, 92.9% sensitivity and 98.8% specificity for glioma grading at a cutoff value of 0.362×10-3 mm2/sec. ADCuh measurement appears to be an easy-to-perform technique with good reproducibility (ICC = 0.9391, P < 0.001). The ADCuh value based in a tri-exponential model exhibited greater efficacy and reliability than other DWI parameters, making it a promising technique for glioma grading.


Assuntos
Neoplasias Encefálicas/diagnóstico , Imagem de Difusão por Ressonância Magnética/métodos , Glioma/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA