Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Med Image Anal ; 97: 103241, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38897032

RESUMO

Although the U-shape networks have achieved remarkable performances in many medical image segmentation tasks, they rarely model the sequential relationship of hierarchical layers. This weakness makes it difficult for the current layer to effectively utilize the historical information of the previous layer, leading to unsatisfactory segmentation results for lesions with blurred boundaries and irregular shapes. To solve this problem, we propose a novel dual-path U-Net, dubbed I2U-Net. The newly proposed network encourages historical information re-usage and re-exploration through rich information interaction among the dual paths, allowing deep layers to learn more comprehensive features that contain both low-level detail description and high-level semantic abstraction. Specifically, we introduce a multi-functional information interaction module (MFII), which can model cross-path, cross-layer, and cross-path-and-layer information interactions via a unified design, making the proposed I2U-Net behave similarly to an unfolded RNN and enjoying its advantage of modeling time sequence information. Besides, to further selectively and sensitively integrate the information extracted by the encoder of the dual paths, we propose a holistic information fusion and augmentation module (HIFA), which can efficiently bridge the encoder and the decoder. Extensive experiments on four challenging tasks, including skin lesion, polyp, brain tumor, and abdominal multi-organ segmentation, consistently show that the proposed I2U-Net has superior performance and generalization ability over other state-of-the-art methods. The code is available at https://github.com/duweidai/I2U-Net.

2.
IEEE J Biomed Health Inform ; 27(7): 3443-3454, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37079414

RESUMO

Automatic segmentation of liver tumors is crucial to assist radiologists in clinical diagnosis. While various deep learningbased algorithms have been proposed, such as U-Net and its variants, the inability to explicitly model long-range dependencies in CNN limits the extraction of complex tumor features. Some researchers have applied Transformer-based 3D networks to analyze medical images. However, the previous methods focus on modeling the local information (eg. edge) or global information (eg. morphology) with fixed network weights. To learn and extract complex tumor features of varied tumor size, location, and morphology for more accurate segmentation, we propose a Dynamic Hierarchical Transformer Network, named DHT-Net. The DHT-Net mainly contains a Dynamic Hierarchical Transformer (DHTrans) structure and an Edge Aggregation Block (EAB). The DHTrans first automatically senses the tumor location by Dynamic Adaptive Convolution, which employs hierarchical operations with the different receptive field sizes to learn the features of various tumors, thus enhancing the semantic representation ability of tumor features. Then, to adequately capture the irregular morphological features in the tumor region, DHTrans aggregates global and local texture information in a complementary manner. In addition, we introduce the EAB to extract detailed edge features in the shallow fine-grained details of the network, which provides sharp boundaries of liver and tumor regions. We evaluate DHT-Net on two challenging public datasets, LiTS and 3DIRCADb. The proposed method has shown superior liver and tumor segmentation performance compared to several state-of-the-art 2D, 3D, and 2.5D hybrid models.


Assuntos
Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Algoritmos , Fontes de Energia Elétrica , Radiologistas , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA