Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 2968, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061577

RESUMO

Endophilin A1 (EP) is a protein enriched in synaptic terminals that has been linked to Alzheimer's disease (AD). Previous in vitro studies have shown that EP can bind to a variety of proteins, which elicit changes in synaptic transmission of neurotransmitters and spine formation. Additionally, we previously showed that EP protein levels are elevated in AD patients and AD transgenic animal models. Here, we establish the in vivo consequences of upregulation of EP expression in amyloid-ß peptide (Aß)-rich environments, leading to changes in both long-term potentiation and learning and memory of transgenic animals. Specifically, increasing EP augmented cerebral Aß accumulation. EP-mediated signal transduction via reactive oxygen species (ROS)/p38 mitogen-activated protein (MAP) kinase contributes to Aß-induced mitochondrial dysfunction, synaptic injury, and cognitive decline, which could be rescued by blocking either ROS or p38 MAP kinase activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Regulação da Expressão Gênica , Trifosfato de Adenosina/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Geneticamente Modificados , Antioxidantes/metabolismo , Cruzamentos Genéticos , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Fragmentos de Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
J Alzheimers Dis ; 59(1): 223-239, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28598851

RESUMO

Loss of synapse and synaptic dysfunction contribute importantly to cognitive impairment in Alzheimer's disease (AD). Mitochondrial dysfunction and oxidative stress are early pathological features in AD-affected brain. However, the effect of AD mitochondria on synaptogenesis remains to be determined. Using human trans-mitochondrial "cybrid" (cytoplasmic hybrid) neuronal cells whose mitochondria were transferred from platelets of patients with sporadic AD or age-matched non-AD subjects with relatively normal cognition, we provide the first evidence of mitochondrial dysfunction compromises synaptic development and formation of synapse in AD cybrid cells in response to chemical-induced neuronal differentiation. Compared to non-AD control cybrids, AD cybrid cells showed synaptic loss which was evidenced by a significant reduction in expression of two synaptic marker proteins: synaptophysin (presynaptic marker) and postsynaptic density protein-95, and neuronal proteins (MAP-2 and NeuN) upon neuronal differentiation. In parallel, AD-mediated synaptic deficits correlate to mitochondrial dysfunction and oxidative stress as well as activation of p38 MAP kinase. Notably, inhibition of p38 MAP kinase by pharmacological specific p38 inhibitor significantly increased synaptic density, improved mitochondrial function, and reduced oxidative stress. These results suggest that activation of p38 MAP kinase signaling pathway contributes to AD-mediated impairment in neurogenesis, possibly by inhibiting the neuronal differentiation. Our results provide new insight into the crosstalk of dysfunctional AD mitochondria to synaptic formation and maturation via activation of p38 MAP kinase. Therefore, blockade of p38 MAP kinase signal transduction could be a potential therapeutic strategy for AD by alleviating loss of synapses.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Mitocôndrias/patologia , Doenças Mitocondriais/etiologia , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Trifosfato de Adenosina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Diferenciação Celular , Proteína 4 Homóloga a Disks-Large , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Células Híbridas , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/patologia , Neuroblastoma/patologia , Neuroblastoma/ultraestrutura , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Rodaminas/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Sinaptofisina/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 37(8): 1536-1547, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28642238

RESUMO

OBJECTIVE: Diabetic subjects are at higher risk of ischemic peripheral vascular disease. We tested the hypothesis that advanced glycation end products (AGEs) and their receptor (RAGE) block angiogenesis and blood flow recovery after hindlimb ischemia induced by femoral artery ligation through modulation of immune/inflammatory mechanisms. APPROACH AND RESULTS: Wild-type mice rendered diabetic with streptozotocin and subjected to unilateral femoral artery ligation displayed increased accumulation and expression of AGEs and RAGE in ischemic muscle. In diabetic wild-type mice, femoral artery ligation attenuated angiogenesis and impaired blood flow recovery, in parallel with reduced macrophage content in ischemic muscle and suppression of early inflammatory gene expression, including Ccl2 (chemokine [C-C motif] ligand-2) and Egr1 (early growth response gene-1) versus nondiabetic mice. Deletion of Ager (gene encoding RAGE) or transgenic expression of Glo1 (reduces AGEs) restored adaptive inflammation, angiogenesis, and blood flow recovery in diabetic mice. In diabetes mellitus, deletion of Ager increased circulating Ly6Chi monocytes and augmented macrophage infiltration into ischemic muscle tissue after femoral artery ligation. In vitro, macrophages grown in high glucose display inflammation that is skewed to expression of tissue damage versus tissue repair gene expression. Further, macrophages grown in high versus low glucose demonstrate blunted macrophage-endothelial cell interactions. In both settings, these adverse effects of high glucose were reversed by Ager deletion in macrophages. CONCLUSIONS: These findings indicate that RAGE attenuates adaptive inflammation in hindlimb ischemia; underscore microenvironment-specific functions for RAGE in inflammation in tissue repair versus damage; and illustrate that AGE/RAGE antagonism may fill a critical gap in diabetic peripheral vascular disease.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Angiopatias Diabéticas/metabolismo , Deleção de Genes , Inflamação/metabolismo , Isquemia/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Doença Arterial Periférica/metabolismo , Receptor para Produtos Finais de Glicação Avançada/deficiência , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Antígenos Ly/metabolismo , Velocidade do Fluxo Sanguíneo , Glicemia/metabolismo , Comunicação Celular , Células Cultivadas , Microambiente Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/fisiopatologia , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Predisposição Genética para Doença , Produtos Finais de Glicação Avançada/metabolismo , Inflamação/genética , Inflamação/fisiopatologia , Isquemia/genética , Isquemia/fisiopatologia , Macrófagos/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Monócitos/metabolismo , Músculo Esquelético/metabolismo , Doença Arterial Periférica/genética , Doença Arterial Periférica/fisiopatologia , Fenótipo , Receptor para Produtos Finais de Glicação Avançada/genética , Recuperação de Função Fisiológica , Fluxo Sanguíneo Regional , Transdução de Sinais , Estreptozocina , Fatores de Tempo
4.
Diabetes ; 63(6): 1948-65, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24520121

RESUMO

In mammals, changes in the metabolic state, including obesity, fasting, cold challenge, and high-fat diets (HFDs), activate complex immune responses. In many strains of rodents, HFDs induce a rapid systemic inflammatory response and lead to obesity. Little is known about the molecular signals required for HFD-induced phenotypes. We studied the function of the receptor for advanced glycation end products (RAGE) in the development of phenotypes associated with high-fat feeding in mice. RAGE is highly expressed on immune cells, including macrophages. We found that high-fat feeding induced expression of RAGE ligand HMGB1 and carboxymethyllysine-advanced glycation end product epitopes in liver and adipose tissue. Genetic deficiency of RAGE prevented the effects of HFD on energy expenditure, weight gain, adipose tissue inflammation, and insulin resistance. RAGE deficiency had no effect on genetic forms of obesity caused by impaired melanocortin signaling. Hematopoietic deficiency of RAGE or treatment with soluble RAGE partially protected against peripheral HFD-induced inflammation and weight gain. These findings demonstrate that high-fat feeding induces peripheral inflammation and weight gain in a RAGE-dependent manner, providing a foothold in the pathways that regulate diet-induced obesity and offering the potential for therapeutic intervention.


Assuntos
Tecido Adiposo/metabolismo , Dieta Hiperlipídica , Inflamação/metabolismo , Resistência à Insulina , Fígado/metabolismo , Obesidade/metabolismo , Receptores Imunológicos/metabolismo , Animais , Técnica Clamp de Glucose , Inflamação/genética , Resistência à Insulina/genética , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor para Produtos Finais de Glicação Avançada , Aumento de Peso/genética
5.
Arterioscler Thromb Vasc Biol ; 33(8): 1779-87, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23766264

RESUMO

OBJECTIVE: Subjects with diabetes mellitus are at high risk for developing atherosclerosis through a variety of mechanisms. Because the metabolism of glucose results in production of activators of protein kinase C (PKC)ß, it was logical to investigate the role of PKCß in modulation of atherosclerosis in diabetes mellitus. APPROACH AND RESULTS: ApoE(-/-) and PKCß(-/-)/ApoE(-/-) mice were rendered diabetic with streptozotocin. Quantification of atherosclerosis, gene expression profiling, or analysis of signaling molecules was performed on aortic sinus or aortas from diabetic mice. Diabetes mellitus-accelerated atherosclerosis increased the level of phosphorylated extracellular signal-regulated kinase 1/2 and Jun-N-terminus kinase mitogen-activated protein kinases and augmented vascular expression of inflammatory mediators, as well as increased monocyte/macrophage infiltration and CD11c(+) cells accumulation in diabetic ApoE(-/-) mice, processes that were diminished in diabetic PKCß(-/-)/ApoE(-/-) mice. In addition, pharmacological inhibition of PKCß reduced atherosclerotic lesion size in diabetic ApoE(-/-) mice. In vitro, the inhibitors of PKCß and extracellular signal-regulated kinase 1/2, as well as small interfering RNA to Egr-1, significantly decreased high-glucose-induced expression of CD11c (integrin, alpha X 9 complement component 3 receptor 4 subunit]), chemokine (C-C motif) ligand 2, and interleukin-1ß in U937 macrophages. CONCLUSIONS: These data link enhanced activation of PKCß to accelerated diabetic atherosclerosis via a mechanism that includes modulation of gene transcription and signal transduction in the vascular wall, processes that contribute to acceleration of vascular inflammation and atherosclerosis in diabetes mellitus. Our results uncover a novel role for PKCß in modulating CD11c expression and inflammatory response of macrophages in the development of diabetic atherosclerosis. These findings support PKCß activation as a potential therapeutic target for prevention and treatment of diabetic atherosclerosis.


Assuntos
Apolipoproteínas E/imunologia , Aterosclerose/imunologia , Diabetes Mellitus Experimental/imunologia , Proteína Quinase C/imunologia , Vasculite/imunologia , Animais , Aortite/imunologia , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Antígeno CD11c/metabolismo , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/imunologia , Angiopatias Diabéticas/metabolismo , Modelos Animais de Doenças , Expressão Gênica/imunologia , Humanos , Hiperglicemia/genética , Hiperglicemia/imunologia , Hiperglicemia/metabolismo , Hiperlipidemias/genética , Hiperlipidemias/imunologia , Hiperlipidemias/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Monócitos/imunologia , Proteína Quinase C/genética , Proteína Quinase C beta , Transdução de Sinais/imunologia , Células U937 , Vasculite/genética , Vasculite/metabolismo
6.
Diabetes ; 62(3): 931-43, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23172920

RESUMO

Peripheral neuropathy and insensate limbs and digits cause significant morbidity in diabetic individuals. Previous studies showed that deletion of the receptor for advanced end-glycation products (RAGE) in mice was protective in long-term diabetic neuropathy. Here, we tested the hypothesis that RAGE suppresses effective axonal regeneration in superimposed acute peripheral nerve injury attributable to tissue-damaging inflammatory responses. We report that deletion of RAGE, particularly in diabetic mice, resulted in significantly higher myelinated fiber densities and conduction velocities consequent to acute sciatic nerve crush compared with wild-type control animals. Consistent with key roles for RAGE-dependent inflammation, reconstitution of diabetic wild-type mice with RAGE-null versus wild-type bone marrow resulted in significantly improved axonal regeneration and restoration of function. Diabetic RAGE-null mice displayed higher numbers of invading macrophages in the nerve segments postcrush compared with wild-type animals, and these macrophages in diabetic RAGE-null mice displayed greater M2 polarization. In vitro, treatment of wild-type bone marrow-derived macrophages with advanced glycation end products (AGEs), which accumulate in diabetic nerve tissue, increased M1 and decreased M2 gene expression in a RAGE-dependent manner. Blockade of RAGE may be beneficial in the acute complications of diabetic neuropathy, at least in part, via upregulation of regeneration signals.


Assuntos
Diabetes Mellitus Tipo 1/complicações , Neuropatias Diabéticas/metabolismo , Regeneração Nervosa , Receptores Imunológicos/metabolismo , Nervo Isquiático/fisiopatologia , Neuropatia Ciática/metabolismo , Animais , Transplante de Medula Óssea , Células Cultivadas , Neuropatias Diabéticas/imunologia , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/prevenção & controle , Produtos Finais de Glicação Avançada/metabolismo , Imuno-Histoquímica , Ligantes , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/transplante , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Compressão Nervosa/efeitos adversos , Condução Nervosa , Especificidade de Órgãos , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Nervo Isquiático/imunologia , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Neuropatia Ciática/imunologia , Neuropatia Ciática/patologia , Neuropatia Ciática/prevenção & controle
7.
Circ Res ; 110(10): 1279-93, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22511750

RESUMO

RATIONALE: The mammalian diaphanous-related formin (mDia1), governs microtubule and microfilament dynamics while functioning as an effector for Rho small GTP-binding proteins during key cellular processes such as adhesion, cytokinesis, cell polarity, and morphogenesis. The cytoplasmic domain of the receptor for advanced glycation endproducts binds to the formin homology 1 domain of mDia1; mDia1 is required for receptor for advanced glycation endproducts ligand-induced cellular migration in transformed cells. OBJECTIVE: Because a key mechanism in vascular remodeling is the induction of smooth muscle cell migration, we tested the role of mDia1 in this process. METHODS AND RESULTS: We report that endothelial denudation injury to the murine femoral artery significantly upregulates mDia1 mRNA transcripts and protein in the injured vessel, particularly in vascular smooth muscle cells within the expanding neointima. Loss of mDia1 expression significantly reduces pathological neointimal expansion consequent to injury. In primary murine aortic smooth muscle cells, mDia1 is required for receptor for advanced glycation endproducts ligand-induced membrane translocation of c-Src, which leads to Rac1 activation, redox phosphorylation of AKT/glycogen synthase kinase 3ß, and consequent smooth muscle cell migration. CONCLUSIONS: We conclude that mDia1 integrates oxidative and signal transduction pathways triggered, at least in part, by receptor for advanced glycation endproducts ligands, thereby regulating pathological neointimal expansion.


Assuntos
Proteínas de Transporte/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/patologia , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Proteínas de Transporte/genética , Movimento Celular/fisiologia , Células Cultivadas , Artéria Femoral/lesões , Artéria Femoral/metabolismo , Artéria Femoral/patologia , Forminas , Produtos Finais de Glicação Avançada/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microtúbulos/fisiologia , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , Neointima/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/metabolismo
8.
J Biol Chem ; 287(7): 5133-44, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22194616

RESUMO

The receptor for advanced glycation end products (RAGE) is a multiligand cell surface macromolecule that plays a central role in the etiology of diabetes complications, inflammation, and neurodegeneration. The cytoplasmic domain of RAGE (C-terminal RAGE; ctRAGE) is critical for RAGE-dependent signal transduction. As the most membrane-proximal event, mDia1 binds to ctRAGE, and it is essential for RAGE ligand-stimulated phosphorylation of AKT and cell proliferation/migration. We show that ctRAGE contains an unusual α-turn that mediates the mDia1-ctRAGE interaction and is required for RAGE-dependent signaling. The results establish a novel mechanism through which an extracellular signal initiated by RAGE ligands regulates RAGE signaling in a manner requiring mDia1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Complicações do Diabetes/genética , Complicações do Diabetes/metabolismo , Forminas , Humanos , Inflamação/genética , Inflamação/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Fosforilação/fisiologia , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/química , Receptores Imunológicos/genética
9.
FASEB J ; 26(2): 882-93, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22075646

RESUMO

In extensive liver resection secondary to primary or metastatic liver tumors, or in living donor liver transplantation, strategies to quell deleterious inflammatory responses and facilitate regeneration are essential. The receptor for advanced glycation endproducts (RAGE) and myeloid differentiating factor 88 (Myd88) are implicated in the inflammatory response. To establish the contributions of RAGE vs. Myd88 signaling in extensive liver resection, we probed the effect of RAGE and/or Myd88, the latter primarily a key transducer of major toll-like receptors and also implicated in interleukin-1 (Il1) signaling, in a murine model of extensive (85%) hepatectomy. We report that, although Myd88 is thoroughly essential for survival via regulation of NF-κB and TNF-α, deletion of RAGE significantly improved survival compared to wild-type, Myd88-null, or RAGE-null/Myd88-null mice. RAGE opposes Myd88 signaling at multiple levels: by suppression of p65 levels, thereby reducing activation of NF-κB and consequent production of cyclin D1, and by suppression of Il6-mediated phosphorylation of Stat3, thereby down-regulating Pim1 and suppressing the hyperplastic response. Further, RAGE-dependent suppression of glyoxalase1, a detoxification pathway for pre-AGEs, enhances AGE levels and suppresses Il6 action. We conclude that blockade of RAGE may rescue liver remnants from the multiple signals that preclude adaptive proliferation triggered primarily by Myd88 signaling pathways.


Assuntos
Regeneração Hepática/fisiologia , Fator 88 de Diferenciação Mieloide/fisiologia , Receptores Imunológicos/fisiologia , Animais , Apoptose/fisiologia , Proliferação de Células , Produtos Finais de Glicação Avançada/metabolismo , Hepatectomia , Hepatócitos/citologia , Hepatócitos/metabolismo , Imunidade Inata , Regeneração Hepática/genética , Regeneração Hepática/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Regulação para Cima
10.
J Gastrointest Surg ; 16(1): 104-12; discussion 112, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22052106

RESUMO

BACKGROUND: The receptor for advanced glycation end-products (RAGE) is implicated in pancreatic tumorigenesis. Activating Kras mutations and p16 inactivation are genetic abnormalities most commonly detected as pancreatic ductal epithelium progresses from intraepithelial neoplasia (PanIN) to adenocarcinoma (PDAC). OBJECTIVE: The aim of this study was to evaluate the effect of RAGE (or AGER) deletion on the development of PanIN and PDAC in conditional Kras ( G12D ) mice. MATERIALS AND METHODS: Pdx1-Cre; LSL-Kras ( G12D/+) mice were crossed with RAGE (-/-) mice to generate Pdx1-Cre; LSL-Kras ( G12D/+) ; RAGE (-/-) mice. Pdx1-Cre; LSL-Kras ( G12D/+); p16 ( Ink4a-/-) mice were crossed with RAGE (-/-) mice to generate Pdx1-Cre; LSL-Kras ( G12D/+); p16 ( Ink4a-/-); RAGE (-/-) mice. Pancreatic ducts were scored and compared to the relevant RAGE (+/+) controls. RESULTS: At 16 weeks of age, Pdx1-Cre; LSL-Kras ( G12D/+); RAGE (-/-) mice had significantly fewer high-grade PanIN lesions than Pdx1-Cre; LSL-Kras ( G12D/+); RAGE (+/+) controls. At 12 weeks of age, none of the Pdx1-Cre; LSL-Kras ( G12D/+); p16 ( Ink4a-/-); RAGE (-/-) mice had PDAC compared to a 45.5% incidence of PDAC in Pdx1-Cre; LSL-Kras ( G12D/+); p16 ( Ink4a-/-); RAGE (+/+) controls. Finally, Pdx1-Cre; LSL-Kras ( G12D/+); p16 ( Ink4a-/-); RAGE (-/-) mice also displayed markedly longer median survival. CONCLUSION: Loss of RAGE function inhibited the development of PanIN and progression to PDAC and significantly prolonged survival in these mouse models. Further work is needed to target the ligand-RAGE axis for possible early intervention and prophylaxis in patients at risk for developing pancreatic cancer.


Assuntos
Adenocarcinoma/genética , Carcinoma in Situ/genética , Transformação Celular Neoplásica/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Receptores Imunológicos/genética , Adenocarcinoma/patologia , Animais , Carcinoma in Situ/patologia , Progressão da Doença , Deleção de Genes , Estimativa de Kaplan-Meier , Camundongos , Modelos Animais , Distribuição de Poisson , Receptor para Produtos Finais de Glicação Avançada
11.
J Gastrointest Surg ; 14(11): 1680-90, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20824364

RESUMO

BACKGROUND: The receptor for advanced glycation end-products (RAGE) is a cell surface receptor implicated in tumor cell proliferation and migration. We hypothesized that RAGE signaling impacts tumorigenesis and metastatic tumor growth in murine models of colorectal carcinoma. MATERIALS AND METHODS: Tumorigenesis: Apc (1638N/+) mice were crossed with Rage (-/-) mice in the C57BL/6 background to generate Apc (1638N/+)/Rage (-/-) mice. Metastasis: BALB/c mice underwent portal vein injection with CT26 cells (syngeneic) and received daily soluble (s)RAGE or vehicle. Rage (-/-) mice and Rage (+/+) controls underwent portal vein injection with MC38 cells (syngeneic). Rage (+/+) mice underwent portal vein injection with MC38 cells after stable transfection with full-length RAGE or mock transfection control. RESULTS: Tumorigenesis: Apc (1638N/+)/Rage (-/-) mice had reduced tumor incidence, size, and histopathologic grade. Metastasis: Pharmacological blockade of RAGE with sRAGE or genetic deletion of Rage reduced hepatic tumor incidence, nodules, and burden. Gain of function by transfection with full-length RAGE increased hepatic tumor burden compared to vector control MC38 cells. CONCLUSION: RAGE signaling plays an important role in tumorigenesis and hepatic tumor growth in murine models of colorectal carcinoma. Further work is needed to target the ligand-RAGE axis for possible prophylaxis and treatment of primary and metastatic colorectal carcinoma.


Assuntos
Neoplasias Colorretais/patologia , Neoplasias Hepáticas/fisiopatologia , Neoplasias Hepáticas/secundário , Receptores Imunológicos/fisiologia , Transdução de Sinais , Animais , Neoplasias Colorretais/fisiopatologia , Produtos Finais de Glicação Avançada , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/genética , Transfecção
12.
Atherosclerosis ; 212(1): 123-30, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20594553

RESUMO

OBJECTIVE: The ubiquitous enzyme protein kinase C (PKC) has been linked to the pathogenesis of vascular injury, but the cell-specific and discrete functions of the betaII isoform have yet to be discovered in this setting. Our previous findings demonstrated significantly increased PKCbetaII in the membrane fraction of injured femoral arteries in wild type (WT) mice and revealed reduction of neointimal expansion in PKCbeta(-/-) mice after acute vascular injury. As PKCbeta(-/-) mice are globally devoid of PKCbeta, we established novel transgenic (Tg) mice to test the hypothesis that the action of PKCbetaII specifically in smooth muscle cells (SMCs) mediates the formation of neointimal lesions in response to arterial injury. METHODS: Tg mice expressing SM22alpha promoter-targeted mouse carboxyl-terminal deletion mutant PKCbetaII were produced using standard techniques, subjected to femoral artery injury and compared with littermate controls. Smooth muscle cells (SMCs) were isolated from wild type (WT) and Tg mice and exposed to a prototypic stimulus, tumor necrosis factor (TNF)-alpha. Multiple strategies were employed in vivo and in vitro to examine the molecular mechanisms underlying the specific effects of SMC PKCbetaII in neointimal expansion. RESULTS: In vivo and in vitro analyses demonstrated that PKCbetaII activity in SMCs was critical for neointimal expansion in response to arterial injury, at least in part via regulation of ERK1/2, Egr-1 and induction of MMP-9. CONCLUSIONS: These data identify the SMC-specific regulatory role of PKCbetaII in neointimal expansion in response to acute arterial injury, and suggest that targeted inactivation of PKCbetaII may be beneficial in limiting restenosis via suppression of the neointima-mediating effects of Egr-1 and MMP-9.


Assuntos
Arteriopatias Oclusivas/prevenção & controle , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Proteína Quinase C/deficiência , Túnica Íntima/enzimologia , Animais , Arteriopatias Oclusivas/enzimologia , Arteriopatias Oclusivas/patologia , Linhagem Celular , Movimento Celular , Proliferação de Células , Constrição Patológica , Modelos Animais de Doenças , Regulação para Baixo , Proteína 1 de Resposta de Crescimento Precoce/deficiência , Proteína 1 de Resposta de Crescimento Precoce/genética , Células Endoteliais/enzimologia , Artéria Femoral/enzimologia , Artéria Femoral/lesões , Artéria Femoral/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Musculares/genética , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Regiões Promotoras Genéticas , Proteína Quinase C/genética , Proteína Quinase C beta , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Túnica Íntima/lesões , Túnica Íntima/patologia
13.
J Biol Chem ; 285(30): 23233-40, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20507991

RESUMO

Receptor for advanced glycation end product (RAGE)-dependent signaling has been implicated in ischemia/reperfusion injury in the heart, lung, liver, and brain. Because macrophages contribute to vascular perturbation and tissue injury in hypoxic settings, we tested the hypothesis that RAGE regulates early growth response-1 (Egr-1) expression in hypoxia-exposed macrophages. Molecular analysis, including silencing of RAGE, or blockade of RAGE with sRAGE (the extracellular ligand-binding domain of RAGE), anti-RAGE IgG, or anti-AGE IgG in THP-1 cells, and genetic deletion of RAGE in peritoneal macrophages, revealed that hypoxia-induced up-regulation of Egr-1 is mediated by RAGE signaling. In addition, the observation of increased cellular release of RAGE ligand AGEs in hypoxic THP-1 cells suggests that recruitment of RAGE in hypoxia is stimulated by rapid production of RAGE ligands in this setting. Finally, we show that mDia-1, previously shown to interact with the RAGE cytoplasmic domain, is essential for hypoxia-stimulated regulation of Egr-1, at least in part through protein kinase C betaII, ERK1/2, and c-Jun NH(2)-terminal kinase signaling triggered by RAGE ligands. Our findings highlight a novel mechanism by which an extracellular signal initiated by RAGE ligand AGEs regulates Egr-1 in a manner requiring mDia-1.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/genética , Macrófagos/citologia , Macrófagos/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Regulação para Cima , Animais , Proteínas de Transporte/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Forminas , Humanos , Ligantes , Camundongos , Receptor para Produtos Finais de Glicação Avançada
14.
J Leukoc Biol ; 86(3): 505-12, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19477910

RESUMO

The RAGE binds multiple ligand families linked to hyperglycemia, aging, inflammation, neurodegeneration, and cancer. Activation of RAGE by its ligands stimulates diverse signaling cascades. The recent observation that the cytoplasmic domain of RAGE interacts with diaphanous or mDia-1 links RAGE signal transduction to cellular migration and activation of the Rho GTPases, cdc42 and rac-1. Pharmacological blockade of RAGE or genetic deletion of RAGE imparts significant protection in murine models of diabetes, inflammatory conditions, Alzheimer's disease, and tumors. Intriguingly, soluble forms of RAGE, including the splice variant-derived esRAGE, circulate in human plasma. Studies in human subjects suggest that sRAGE levels may be modulated by the diseases impacted by RAGE and its ligands. Thus, in addition to being a potential therapeutic target in chronic disease, monitoring of plasma sRAGE levels may provide a novel biomarker platform for tracking chronic inflammatory diseases, their severity, and response to therapeutic intervention.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Inflamação/metabolismo , Receptores Imunológicos/metabolismo , Biomarcadores/sangue , Produtos Finais de Glicação Avançada/genética , Humanos , Inflamação/genética , Ligantes , Modelos Imunológicos , Polimorfismo de Nucleotídeo Único , Ligação Proteica/genética , Estrutura Terciária de Proteína , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/sangue , Receptores Imunológicos/química , Receptores Imunológicos/genética , Transdução de Sinais , Solubilidade
15.
Ann Med ; 41(6): 408-22, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19322705

RESUMO

The multiligand receptor RAGE (receptor for advanced glycation end-products) is emerging as a central mediator in the immune/inflammatory response. Epidemiological evidence accruing in the human suggests upregulation of RAGE's ligands (AGEs, S100/calgranulins, high mobility group box-1 (HMGB1), and amyloid beta-peptide and beta-sheet fibrils) and the receptor itself at sites of inflammation and in chronic diseases such as diabetes and neurodegeneration. The consequences of ligand-RAGE interaction include upregulation of molecules implicated in inflammatory responses and tissue damage, such as cytokines, adhesion molecules, and matrix metalloproteinases. In this review, we discuss the localization of RAGE and its ligand families and the biological impact of this axis in multiple cell types implicated in chronic diseases. Lastly, we consider findings from animal model studies suggesting that although tissue-damaging effects ensue from recruitment of the ligand-RAGE interaction, in distinct settings, adaptive and repair/regeneration outcomes appear to override detrimental effects of RAGE. As RAGE blockade moves further into clinical development, clarifying the biology of RAGE garners ever-increasing importance.


Assuntos
Complicações do Diabetes/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Inflamação/metabolismo , Doenças Neurodegenerativas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Dendritos/metabolismo , Produtos Finais de Glicação Avançada/imunologia , Proteína HMGB1/metabolismo , Humanos , Complexo Antígeno L1 Leucocitário/metabolismo , Ligantes , Macrófagos/metabolismo , Camundongos , Monócitos/metabolismo , Neutrófilos/metabolismo , Ratos , Regulação para Cima
16.
J Am Soc Nephrol ; 19(5): 961-72, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18256352

RESUMO

In the kidney, the receptor for advanced glycation end products (RAGE) is principally expressed in the podocyte at low levels, but is upregulated in both human and mouse glomerular diseases. Because podocyte injury is central to proteinuric states, such as the nephrotic syndrome, the murine adriamycin nephrosis model was used to explore the role of RAGE in podocyte damage. In this model, administration of the anthracycline antibiotic adriamycin provokes severe podocyte stress and glomerulosclerosis. In contrast to wild-type animals, adriamycin-treated RAGE-null mice were significantly protected from effacement of the podocyte foot processes, albuminuria, and glomerulosclerosis. Administration of adriamycin induced rapid generation of RAGE ligands, and treatment with soluble RAGE protected against podocyte injury and glomerulosclerosis. In vitro, incubation of RAGE-expressing murine podocytes with adriamycin stimulated AGE formation, and treatment with RAGE ligands rapidly activated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, via p44/p42 MAP kinase signaling, and upregulated pro-fibrotic growth factors. These data suggest that RAGE may contribute to the pathogenesis of podocyte injury in sclerosing glomerulopathies such as focal segmental glomerulosclerosis.


Assuntos
Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/fisiopatologia , Podócitos/metabolismo , Receptores Imunológicos/metabolismo , Animais , Antibióticos Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Produtos Finais de Glicação Avançada/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ligantes , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo/fisiologia , Podócitos/patologia , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Regulação para Cima/fisiologia
17.
J Cell Sci ; 119(Pt 21): 4565-73, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17074836

RESUMO

In healthy hosts, acute infection with the opportunistic pathogen Toxoplasma gondii is controlled by innate production of IL-12, a key cytokine crucial for the development of protective immunity. Previous work has established that the mitogen-activated protein kinases (MAPK), particularly p38 and ERK1/2, are important regulators of T. gondii-induced IL-12 synthesis. Here we report that host cell Ca(2+) is required for activation of MAPK by T. gondii, as well as LPS and CpG, and for parasite-induced synthesis of IL-12. In addition, pharmacological mobilization of Ca(2+) stores in macrophages treated with parasites or LPS enhanced MAPK phosphorylation initiated by these stimuli. Investigation of the upstream mechanism by which Ca(2+) regulates MAPK activation revealed that T. gondii induced acute activation of conventional, Ca(2+)-dependent PKCalpha and PKCbeta, which are required for infection-induced MAPK activation and production of IL-12. Despite these findings, neither acute parasite infection nor LPS initiated a measurable Ca(2+) response in macrophages, suggesting that low levels of Ca(2+) are permissive for initiation of pro-inflammatory signaling. Together these data identify host cell Ca(2+) and PKC as crucial regulators of the innate immune response to microbial stimuli, including T. gondii.


Assuntos
Cálcio/metabolismo , Proteína Quinase C/metabolismo , Toxoplasma/imunologia , Animais , Medula Óssea/imunologia , Medula Óssea/metabolismo , Células Cultivadas , Feminino , Interleucina-12/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Transporte Proteico , Transdução de Sinais , Toxoplasma/fisiologia , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/metabolismo
18.
Circulation ; 113(9): 1226-34, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16505177

RESUMO

BACKGROUND: The beneficial effects of reperfusion therapies have been limited by the amount of ischemic damage that occurs before reperfusion. To enable development of interventions to reduce cell injury, our research has focused on understanding mechanisms involved in cardiac cell death after ischemia/reperfusion (I/R) injury. In this context, our laboratory has been investigating the role of the receptor for advanced-glycation end products (RAGE) in myocardial I/R injury. METHODS AND RESULTS: In this study we tested the hypothesis that RAGE is a key modulator of I/R injury in the myocardium. In ischemic rat hearts, expression of RAGE and its ligands was significantly enhanced. Pretreatment of rats with sRAGE, a decoy soluble part of RAGE receptor, reduced ischemic injury and improved functional recovery of myocardium. To specifically dissect the impact of RAGE, hearts from homozygous RAGE-null mice were isolated, perfused, and subjected to I/R. RAGE-null mice were strikingly protected from the adverse impact of I/R injury in the heart, as indicated by decreased release of LDH, improved functional recovery, and increased adenosine triphosphate (ATP). In rats and mice, activation of the RAGE axis was associated with increases in inducible nitric oxide synthase expression and levels of nitric oxide, cyclic guanosine monophosphate (cGMP), and nitrotyrosine. CONCLUSIONS: These findings demonstrate novel and key roles for RAGE in I/R injury in the heart. The findings also demonstrate that the interaction of RAGE with advanced-glycation end products affects myocardial energy metabolism and function during I/R.


Assuntos
Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Receptores Imunológicos/fisiologia , Animais , GMP Cíclico/análise , Metabolismo Energético , Masculino , Camundongos , Camundongos Knockout , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Óxido Nítrico/análise , Óxido Nítrico Sintase Tipo II/análise , Ratos , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/deficiência , Tirosina/análogos & derivados , Tirosina/análise , Regulação para Cima
19.
J Exp Med ; 201(3): 473-84, 2005 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-15699076

RESUMO

The exquisite ability of the liver to regenerate is finite. Identification of mechanisms that limit regeneration after massive injury holds the key to expanding the limits of liver transplantation and salvaging livers and hosts overwhelmed by carcinoma and toxic insults. Receptor for advanced glycation endproducts (RAGE) is up-regulated in liver remnants selectively after massive (85%) versus partial (70%) hepatectomy, principally in mononuclear phagocyte-derived dendritic cells (MPDDCs). Blockade of RAGE, using pharmacological antagonists or transgenic mice in which a signaling-deficient RAGE mutant is expressed in cells of mononuclear phagocyte lineage, significantly increases survival after massive liver resection. In the first hours after massive resection, remnants retrieved from RAGE-blocked mice displayed increased activated NF-kappaB, principally in hepatocytes, and enhanced expression of regeneration-promoting cytokines, TNF-alpha and IL-6, and the antiinflammatory cytokine, IL-10. Hepatocyte proliferation was increased by RAGE blockade, in parallel with significantly reduced apoptosis. These data highlight central roles for RAGE and MPDDCs in modulation of cell death-promoting mechanisms in massive hepatectomy and suggest that RAGE blockade is a novel strategy to promote regeneration in the massively injured liver.


Assuntos
Regeneração Hepática , Fígado/metabolismo , Fígado/patologia , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose/fisiologia , Linhagem da Célula , Proliferação de Células , Citocinas/metabolismo , Regulação da Expressão Gênica , Hepatectomia , Humanos , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos , Taxa de Sobrevida
20.
Circ Res ; 96(4): 476-83, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15662033

RESUMO

We tested the hypothesis that PKCbeta contributes to vascular smooth muscle cell (SMC) migration and proliferation; processes central to the pathogenesis of restenosis consequent to vascular injury. Homozygous PKCbeta null (-/-) mice or wild-type mice fed the PKCbeta inhibitor, ruboxistaurin, displayed significantly decreased neointimal expansion in response to acute femoral artery endothelial denudation injury compared with controls. In vivo and in vitro analyses demonstrated that PKCbetaII is critically linked to SMC activation, at least in part via regulation of ERK1/2 MAP kinase and early growth response-1. These data highlight novel roles for PKCbeta in the SMC response to acute arterial injury and suggest that blockade of PKCbeta may represent a therapeutic strategy to limit restenosis.


Assuntos
Artéria Femoral/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Proteína Quinase C/fisiologia , Túnica Íntima/patologia , Animais , Aorta , Glicemia/análise , Divisão Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Constrição Patológica/prevenção & controle , Proteínas de Ligação a DNA/fisiologia , Proteína 1 de Resposta de Crescimento Precoce , Ativação Enzimática , Artéria Femoral/patologia , Flavonoides/farmacologia , Humanos , Proteínas Imediatamente Precoces/fisiologia , Indóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Janus Quinase 2 , Maleimidas/farmacologia , Mesilatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Músculo Liso Vascular/enzimologia , Estresse Oxidativo , Peroxidase/análise , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/deficiência , Proteína Quinase C/genética , Proteína Quinase C beta , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Pirróis/farmacologia , Fator de Transcrição STAT3 , Transdução de Sinais/fisiologia , Acetato de Tetradecanoilforbol/farmacologia , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Túnica Íntima/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA