Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37702882

RESUMO

Pancreatic adenocarcinoma (PAAD) is a lethal malignancy of the gastrointestinal tract. Circular RNA, an endogenous noncoding RNA, is considered a new regulatory molecule in tumorigenesis and development. Here, we aimed to investigate the role of circPGAM1 in PAAD. The PAAD cell line HPAC was transfected with OE-circPGAM1 to overexpress circPGAM1 and treated with AZD5363 to inhibit the AKT/mTOR pathway. Simultaneously, another PAAD cell line BxPC-3 was transfected with sh-circPGAM1 to silence circPGAM1. The GEPIA database was used to determine the expression of circPGAM1 in PAAD and its association with overall and disease-free survival. CircPGAM1 expression levels were determined in cell lines using reverse transcription-quantitative PCR. The cell counting kit-8, wound healing, and transwell assays were performed to determine cell migration and invasion. The protein expression levels of phosphorylated AKT and mTOR were determined using western blotting. CircPGAM1 was overexpressed in PAAD and related to poor prognosis. Silencing circPGAM1 inhibited migration and invasion of BxPC-3 cells, and overexpression of circPGAM1 showed the opposite effects. Overall, circPGAM1 promoted the migration and invasion of PAAD cells through the AKT/mTOR axis.

2.
Open Life Sci ; 18(1): 20220538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37070074

RESUMO

The PI3K/AKT/mTOR (phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin) pathway can be initiated by PROK1 (prokineticin 1), but its effect and mechanism of action in pancreatic carcinoma (PC) are not fully understood. In this study, we elucidated the roles of PROK1 and its related molecules in PC in vivo. PANC-1 cells with PROK1 knockdown were injected into BALB/c nude mice. The growth and weight of the tumor were monitored and measured, which was followed by TUNEL (terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling), immunohistochemical staining, and hematoxylin and eosin staining. The key proteins related to proliferation, apoptosis, and the PI3K/AKT/mTOR pathway were determined by Western blotting. We also used public databases to identify the molecules related to PROK1. The reduction of PROK1 inhibited angiopoiesis and promoted apoptosis in vivo. PCNA-1, cyclin D1, and Bcl-2 decreased considerably, while Bax and cleaved caspase-3 increased significantly after PROK1 inhibition. The PI3K/AKT/mTOR signal inhibition was also closely associated with PROK1 knockdown. The possible related molecules of PROK1, such as von Willebrand factor, were screened and considered to be involved in the aberrant activation of PI3K/AKT. In conclusion, PROK1 knockdown significantly prevented tumor growth and promoted apoptosis of human PC cells in vivo, where the PI3K/AKT/mTOR pathway was probably inhibited. Therefore, PROK1, along with its related molecules, might be important targets for PC therapy.

3.
Appl Microbiol Biotechnol ; 106(18): 6077-6094, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35976426

RESUMO

Sodium bicarbonate pretreatment and solid-state fermentation (SSF) were used to maximize the nutritional value of corn germ meal (CGM) by inoculating it with Bacillus velezensis CL-4 (isolated from chicken cecal contents and capable of degrading lignocellulose). Based on genome sequencing, B. velezensis CL-4 has a 4,063,558 bp ring chromosome and 46.27% GC content. Furthermore, genes associated with degradation of lignocellulose degradation were detected. Pretreatment of CGM (PCGM) with sodium bicarbonate (optimized to 0.06 g/mL) neutralized low pH. Fermented and pretreated CGM (FPCGM) contained more crude protein (CP), soluble protein of trichloroacetic acid (TCA-SP), and total amino acids (aa) than CGM and PCGM. Degradation rates of cellulose and hemicellulose were reduced by 21.33 and 71.35%, respectively, after 48 h fermentation. Based on electron microscopy, FPCGM destroys the surface structure and adds small debris of the CGM substrate, due to lignocellulose breakdown. Furthermore, 2-oxoadipic acid and dimethyl sulfone were the most important metabolites during pretreatment. Concentrations of adenosine, cytidine, guanosine, S-methyl-5'-thioadenosine, and adenine decreased significantly after 48 h fermentation, whereas concentrations of probiotics, enzymes, and fatty acids (including palmitic, 16-hydroxypalmitic, and linoleic acids) were significantly improved after fermentation. In conclusion, the novel pretreatment of CGM provided a proof of concept for using B. velezensis CL-4 to degrade lignocellulose components, improve nutritional characteristics of CGM, and expand CGM lignocellulosic biological feed production. KEY POINTS: • Sodium bicarbonate (baking soda) can be used as an economical and green additive to pretreat corn germ meal; • Fermentation with B. velezensis degrades the cellulose and hemicellulose component of corn germ meal and improves its feed quality; • As a novel qualified presumption of safety (QPS) strain, B. velezensis should have broad potential applications in food and feed industries.


Assuntos
Bicarbonato de Sódio , Zea mays , Bacillus , Celulose/metabolismo , Fermentação , Lignina , Nutrientes , Bicarbonato de Sódio/metabolismo , Zea mays/metabolismo
4.
J Anim Physiol Anim Nutr (Berl) ; 105(4): 630-638, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33480135

RESUMO

The objective of this study was to investigate the effects of origanum oil (ORO), hydrolysable tannins (HYT) and tea saponin (TES) on methane (CH4 ) emission, rumen fermentation, productive performance and gas exchange in sheep by using in vitro and in vivo methods. The ORO, HYT and TES additive levels were normalized per kg dry matter (DM) in both in vitro and in vivo experiments: ORO-0, 10, 20 and 40 ml/kg; HYT-0, 15, 30 and 60 g/kg; and TES-0, 15, 30 and 60 g/kg, respectively. During in vitro incubation, 40 ml/kg ORO linearly decreased CH4 emission (p < 0.05); 20 and 40 ml/kg ORO cubically decreased carbon dioxide (CO2 ) production (p < 0.05), and rumen pH was cubically raised with the increasing ORO additive level (p < 0.01). The 60 g/kg HYT cubically decreased CH4 production (p < 0.05). The pH of 60 g/kg HYT was higher than that of 15 and 30 g/kg (p < 0.01); the pH of 20 g/kg TES was higher than that of 5 g/kg (p < 0.05). In the in vivo experiments, 40 ml/kg ORO inhibited dry matter intake (p < 0.01) cubically and reduced average daily gain (ADG) and feed conversion ratio (FCR) cubically (p < 0.05), and 20 or 40 ml/kg ORO linearly decreased CH4 production based on per day or metabolic weight (W0.75 ) (p < 0.05). Both 30 and 60 g/kg HYT linearly inhibited CH4 emission on the bases of per day and W0.75 (p < 0.05). The 20 g/kg TES improved the apparent digestibility of crude protein (p < 0.05), 10 and 20 g/kg of TES decreased CH4 emission (p < 0.05), and 5 g/kg of TES reduced O2 consumption and CO2 production (p < 0.05). In conclusion, these three plant extracts all showed the abilities on mitigating CH4 emission of sheep with appropriate additive ranges.


Assuntos
Metano , Saponinas , Animais , Dieta/veterinária , Digestão , Feminino , Fermentação , Taninos Hidrolisáveis/metabolismo , Lactação , Metano/metabolismo , Leite , Óleos Voláteis , Rúmen/metabolismo , Ruminantes , Saponinas/farmacologia , Ovinos , Silagem/análise , Chá/metabolismo
5.
Biomed Pharmacother ; 109: 762-769, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551529

RESUMO

OBJECTIVE: Pancreatic carcinoma (PC), one of the most prevalent and malignant tumors, has a poor prognosis and a high mortality rate. EG-VEGF, a vascular endothelial growth factor from endocrine glands, also termed as PROK1, has a high positive expression rate in PC tissues and is involved in the pathogenesis of various tumors. However, the expression and potential role of EG-VEGF in PC has not been thoroughly explored. The aim of this study was to better clarify the expression and potential role of EG-VEGF in pancreatic carcinoma. METHODS: Immunohistochemical staining, western blotting, and RT-qPCR analysis were performed to detect the EG-VEGF level in PC tissues and cells. Subsequently, two short hairpin RNA (shRNA) lentiviral expression vector, shPROK1-1/shPROK1-2, were transfected into PANC-1 and BxPC-3 PC cell lines. MTT assay was used to determine cell proliferation. Meanwhile, flow cytometry assay was conducted to measure cell cycle and cell apoptosis. The protein levels of PI3K/AKT/mTOR pathway-related genes were also determined by western blotting. RESULTS: EG-VEGF was aberrantly expressed in PC samples, as compared with paracancerous samples. Knockdown of PROK1 notably decreased the protein level of EG-VEGF, indicating a successful downregulation model of EG-VEGF. EG-VEGF silencing remarkably attenuated cell proliferation, while also induced G0/G1 arrest and magnified the extent of cell apoptosis. Further, EG-VEGF knockdown significantly inhibited PI3K/AKT/mTOR signaling pathway by downregulating p-PI3K, p-AKT, and p-mTOR levels. CONCLUSION: This study identified the high-expression of EG-VEGF in pancreatic carcinoma tissues and cells, and demonstrated that EG-VEGF silencing inhibits the proliferation of PC cells and promotes apoptosis via regulating PI3K/AKT/mTOR pathway. Thus, EG-VEGF may become an essential target for the therapy of pancreatic cancer in the future.


Assuntos
Proliferação de Células/fisiologia , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina/biossíntese , Idoso , Apoptose/fisiologia , Linhagem Celular , Feminino , Inativação Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais/fisiologia , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina/antagonistas & inibidores , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina/genética , Neoplasias Pancreáticas
6.
CNS Neurosci Ther ; 25(1): 47-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29781252

RESUMO

AIMS: Acid-sensing ion channels (ASICs) are extracellular proton-gated cation channels that have been implicated in multiple physiological and pathological processes, and peripheral ASIC3 prominently participate into the pathogenesis of chronic pain, itch, and neuroinflammation, which necessitates the need for discovery and development of novel modulators in a subtype-specific manner. METHODS: Whole-cell patch clamp recordings and behavioral assays were used to examine the effect of several natural compounds on the ASIC-mediated currents and acid-induced nocifensive behavior, respectively. RESULTS: We identified a natural flavonoid compound, (-)-epigallocatechin gallate (EGCG, compound 11), that acts as a potent inhibitor for the ASIC3 channel in an isoform-specific way. The compound 11 inhibited ASIC3 currents with an apparent half maximal inhibitory concentration of 13.2 µmol/L when measured at pH 5.0. However, at the concentration up to 100 µmol/L, the compound 11 had no significant impacts on the homomeric ASIC1a, 1b, and 2a channels. In contrast to most of the known ASIC inhibitors that usually bear either basic or carboxylic groups, the compound 11 belongs to the polyphenolic family. In compound 11, both the chirality and the 3-hydroxyl group of its pyrogallol part, in addition to the integrity of the gallate part, are crucial for the inhibitory efficacy. Finally, EGCG was found significantly to decrease the acid-induced nocifensive behavior in mice. CONCLUSION: Taken together, these results thus defined a novel backbone structure for small molecule drug design targeting ASIC3 channels to treat pain-related diseases.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Catequina/análogos & derivados , Bloqueadores do Canal Iônico Sensível a Ácido/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Analgésicos/química , Analgésicos/farmacologia , Animais , Células CHO , Catequina/química , Catequina/farmacologia , Cricetulus , Humanos , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Dor/tratamento farmacológico , Dor/metabolismo , Distribuição Aleatória , Ratos , Relação Estrutura-Atividade
7.
Drug Des Devel Ther ; 9: 575-601, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25632225

RESUMO

Pancreatic cancer is the most aggressive cancer worldwide with poor response to current therapeutics. Alisertib (ALS), a potent and selective Aurora kinase A inhibitor, exhibits potent anticancer effects in preclinical and clinical studies; however, the effect and underlying mechanism of ALS in the pancreatic cancer treatment remain elusive. This study aimed to examine the effects of ALS on cell growth, autophagy, and epithelial-to-mesenchymal transition (EMT) and to delineate the possible molecular mechanisms in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that ALS exerted potent cell growth inhibitory, pro-autophagic, and EMT-suppressing effects in PANC-1 and BxPC-3 cells. ALS remarkably arrested PANC-1 and BxPC-3 cells in G2/M phase via regulating the expression of cyclin-dependent kinases 1 and 2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. ALS concentration-dependently induced autophagy in PANC-1 and BxPC-3 cells, which may be attributed to the inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (p38 MAPK), and extracellular signal-regulated kinases 1 and 2 (Erk1/2) but activation of 5'-AMP-dependent kinase signaling pathways. ALS significantly inhibited EMT in PANC-1 and BxPC-3 cells with an increase in the expression of E-cadherin and a decrease in N-cadherin. In addition, ALS suppressed the expression of sirtuin 1 (Sirt1) and pre-B cell colony-enhancing factor/visfatin in both cell lines with a rise in the level of acetylated p53. These findings show that ALS induces cell cycle arrest and promotes autophagic cell death but inhibits EMT in pancreatic cancer cells with the involvement of PI3K/Akt/mTOR, p38 MAPK, Erk1/2, and Sirt1-mediated signaling pathways. Taken together, ALS may represent a promising anticancer drug for pancreatic cancer treatment. More studies are warranted to investigate other molecular targets and mechanisms and verify the efficacy and safety of ALS in the treatment of pancreatic cancer.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Azepinas/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pancreáticas/enzimologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Sirtuína 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Pancreáticas/patologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA