Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Int J Lab Hematol ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38826023

RESUMO

INTRODUCTION: The purpose of this study was to investigate the effects and potential mechanisms of ferroptosis-related gene heat shock protein beta-1 (HSPB1) on acute myeloid leukemia (AML). METHODS: The RNA-seq and clinical data of AML samples were obtained from the Genomic Data Commons database, and the FerrDb database was used to screen the marker, drive and suppressor of ferroptosis. Besides, DESeq2 was applied for differential expression analysis on AML samples and screening for differentially expressed genes (DEGs). The screened DEGs were subjected to the intersection analysis with ferroptosis-related genes to identify the ferroptosis-related DEGs. Next, the functional pathways of ferroptosis-related DEGs were further be discussed by Gene Ontology as well as Kyoto Encyclopedia of Genes and Genomes enrichment analysis of DEGs. Additionally, lasso regression analysis was employed to determine the differential genes related to prognosis in patients with AML and the survival analysis was performed. Subsequently, quantitative real-time polymerase chain reaction and western blot assay were applied to detect the mRNA and protein expression levels of HSPB1 in normal/AML bone marrow tissues and human normal (HS-5)/AML (HL-60) bone marrow cells, respectively. Furthermore, HSPB1 was knocked down to assess the expression changes of glutathione peroxidase 4 and acyl-CoA synthetase long-chain family member 4. Ultimately, the viability and oxidative stress levels of HL-60 were analyzed by Cell Counting Kit-8 and biochemical detection. RESULTS: A total of 4986 DEGs were identified in AML samples, with 3324 up-regulated and 1662 down-regulated. The enrichment analysis illustrated that ferroptosis-related DEGs were significantly enriched in response to metal irons, oxidative stress, and other pathways. After lasso regression analysis, 17 feature genes related to the prognosis of patients with AML were obtained, with HSPB1 exhibiting a significant correlation. The reliability of our models was verified by Cox regression analysis and survival analysis of the hazard model. Furthermore, the outcomes of quantitative real-time polymerase chain reaction and western blot showed that mRNA and protein expression levels of HSPB1 were significantly increased in the AML Group and HL-60 cells. The knockdown of HSPB1 in HL-60 cells reduced the protein level of glutathione peroxidase 4, increased the protein level of acyl-CoA synthetase long-chain family member 4, decreased the cell viability, and aggravated oxidative stress. CONCLUSION: Ferroptosis-related gene HSPB1 is highly expressed in patients with AML. In addition, HSPB1 may be involved in the occurrence and development of AML by regulating oxidative stress and ferroptosis-related pathways. This study provides new clues for further understanding of AML molecular mechanisms. Also, HSPB1 is expected to be a potential therapeutic target for AML in the future.

2.
Surgery ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38811326

RESUMO

BACKGROUND: Emodin, a natural anthraquinone derivative found in various Chinese medicinal herbs, has been proved to be an effective therapeutic agent in the treatment of many diseases. However, its effect on lung injury after intestinal ischemia/reperfusion injury remains unknown. This research was designed to investigate whether emodin protects against intestinal ischemia/reperfusion-induced lung injury and to elucidate the underlying molecular mechanisms in vivo and in vitro. METHODS: Intestinal ischemia/reperfusion injury was induced by occluding the superior mesenteric artery in mice, and mouse lung epithelial-12 cells were subjected to oxygen-glucose deprivation and reoxygenation to establish an in vitro model. RESULTS: Our data indicated that emodin treatment reduced intestinal ischemia/reperfusion-induced oxidative stress, inflammation and apoptosis in lung tissues and alleviated lung injury. However, the protective effects of emodin on intestinal ischemia/reperfusion-induced lung injury were reversed by the protein kinase B inhibitor triciribine or the heme oxygenase-1 inhibitor tin protoporphyrin IX. The protein kinase inhibitor triciribine also downregulated the expression of heme oxygenase-1. CONCLUSION: In conclusion, our data suggest that emodin treatment protects against intestinal ischemia/reperfusion-induced lung injury by enhancing heme oxygenase-1 expression via activation of the PI3K/protein kinase pathway. Emodin may act as a potential therapeutic agent for the prevention and treatment of lung injury induced by intestinal ischemia/reperfusion.

3.
Int J Surg ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608032

RESUMO

BACKGROUND: Whether health inequalities of disease burden and medical utilization exist by ethnicity in Asian breast cancer (BC) patients remains unclear. We aim to measure ethnic disparities in disease burden and utilization among Mongolian and Han female breast cancer patients in China. MATERIALS AND METHODS: Based on data extracted from Inner Mongolia Regional Health Information Platform, a retrospective cohort study was established during 2012-2021. Disease burden including incidence, 5-year prevalence, mortality, survival rate, and medical cost were analyzed and compared between Han and Mongolian patients. RESULTS: A total of 34,878 female patients (mean [SD] age, 52.34 [10.93] years) were included among 18.19 million Chinese, and 4,315 [12.03%] participants were Mongolian. Age-standardized rates of incidence are 32.68 (95% CI: 20.39-44.98) per 100,000. Higher age-specific incidence and 5-year prevalence were observed in Mongolian than in Han. The cost of breast cancer annually per capita was significantly lower for Mongolian than Han in FBC ($1,948.43 [590.11-4 776.42] vs. $2,227.35 [686.65-5,929.59], P<0.001). Mongolian females showed higher all-cause mortality (30.92, [95% CI: 28.15-33.89] vs. 27.78, [95% CI: 26.77-28.83] per 1,000, P=0.036) and breast cancer-specific mortality (18.78, [95% CI: 16.64-21.13] vs. 15.22, [95% CI: 14.47-16.00] per 1,000, P=0.002) than Han females. After adjusting covariates, Mongolian were associated with increased all-cause mortality (HR, 1.21, [95% CI, 1.09-1.34]; P<0.001) and breast cancer-specific mortality (HR, 1.31, [95% CI, 1.14-1.49]; P<0.001). CONCLUSION: The findings of this cohort study highlight a higher level of disease burden with unmet medical demand in Mongolian patients, suggesting that more practical efforts should be made for the minority. Further research is needed to explore the concrete mechanisms of the disparities as well as eliminate health disproportion.

4.
Nat Prod Res ; : 1-7, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520719

RESUMO

Persicaria capitata was a frequently used Hmong medicinal flora in China. In this study, one new phenolic compound, capitaone A (1) together with 20 known ones, were isolated from the whole herb of P. capitata. Among them, 7 components (4, 9-11, 15-16, 20-21) were discovered from P. capitata for the first time. Their chemical structures were elucidated on the basis of extensive NMR and MS spectrum. Furthermore, three compounds (15, 20, 21) displayed remarkable cytotoxic activities against two human cancer cell lines (A549 and HepG2).

5.
Zhen Ci Yan Jiu ; 49(3): 247-255, 2024 Mar 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500321

RESUMO

OBJECTIVES: To observe the effect of Guasha on inflammation factors, apoptosis and autophagy in the cartilage tissue of knee joint in rats with knee osteoarthritis (KOA), so as to explore its mechanisms underlying improvement of KOA. METHODS: A total of 51 male SD rats were randomized into three groups:blank control, KOA model and Guasha (n= 17 in each group) . The rats in the blank control group received intra-articular injection of 0.9% NaCl solution in the right knee joint. The KOA model was established by intraarticular injection of glutamate sodium iodoacetic acid in the right knee joint. For rats of the Guasha group, Guasha (at a frequency of 1 time/s, and an applied pressure of 0.3-0.5 kgf) was applied to "Yanglingquan" (GB34) and "Xuehai"(SP10) areas of the right leg, once every other day, for 7 consecutive sessions. The circumference of the right knee was measured, The histopathological changes of right knee cartilage were observed after H.E. staining. The contents of inflammatory factors interleukin (IL)-1ß and tumor necrosis factor (TNF)-α in the right knee articular cartilage tissue were assayed using ELISA. The expression levels of autophagy-related key molecule Beclin-1 (homologous series of yeast Atg6), light chain protease complication 3 type II/I (LC3II/LC3 I), ubiquitin binding factor 62 (P62) and cysteine aspartate protease-3 (Caspase-3) mRNAs and proteins of the right knee articular cartilage tissue were measured using real-time fluorescent quantitative PCR and Western blot, separately. The apoptosis of chondrocytes was assayed using TUNEL staining, and the immunoactivity of LC3 determined using immunofluorescence staining. RESULTS: After modeling, the right knee circumfe-rence of the model and Guasha groups was significantly increased compared with the blank control group (P<0.01), and after the intervention, the knee circumference of the Guasha group was markedly decreased in comparison with that of the model group (P<0.05). Results of H.E. staining showed obvious degeneration and defects in the cartilage tissue, necrosis of a large number of chondrocytes, fibrous hyperplasia, accompanied by inflammatory cell infiltration, osteoclast increase, fibroplasia and bone trabecular destruction in the model group, which was relatively milder in the Guasha group. Compared with the blank control group, the expression of Beclin-1 and LC3 mRNAs and proteins, and LC immunofluorescence intensity in the right knee articular cartilage tissue were significantly down-regulated (P<0.01, P<0.001), whereas the expression of P62 and Caspase-3 mRNAs and proteins, the apoptosis rate, contents of IL-1ß and TNF-α in the right knee articular cartilage tissue considerably increased (P<0.01, P<0.001) in the model group. In contrast to the model group, the Guasha group had an apparent increase in the expression levels of Beclin-1 and LC3 mRNAs and proteins and LC immunofluorescence intensity in the right knee articular cartilage tissue (P<0.05), and a pronounced decrease in the expression of P62 and Caspase-3 mRNAs and proteins, the apoptosis rate, and contents of IL-1ß and TNF-α in the right knee articular cartilage tissue (P<0.05, P<0.01). CONCLUSIONS: Guasha stimulation of GB34 and SP10 can improve joint cartilage damage in KOA rats, which may be associated with its functions in inhibiting the excessive release of inflammatory factors and apoptosis, possibly by down-regulating the expression of P62 and Caspase-3 mRNAs and proteins and up-regulating the expression of Beclin-1 and LC3 mRNAs and proteins, and by promoting autophagy of chondrocytes.


Assuntos
Osteoartrite do Joelho , Ratos , Masculino , Animais , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/terapia , Caspase 3/metabolismo , Condrócitos/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína Beclina-1/metabolismo , Apoptose/genética , Autofagia/genética
6.
Mol Biol Rep ; 51(1): 415, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472517

RESUMO

Estrogen regulates a wide range of neuronal functions in the brain, such as dendritic spine formation, remodeling of synaptic plasticity, cognition, neurotransmission, and neurodevelopment. Estrogen interacts with intracellular estrogen receptors (ERs) and membrane-bound ERs to produce its effect via genomic and non-genomic pathways. Any alterations in these pathways affect the number, size, and shape of dendritic spines in neurons associated with psychiatric diseases. Increasing evidence suggests that estrogen fluctuation causes changes in dendritic spine density, morphology, and synapse numbers of excitatory and inhibitory neurons differently in males and females. In this review, we discuss the role of estrogen hormone in rodents and humans based on sex differences. First, we explain estrogen role in learning and memory and show that a high estrogen level alleviates the deficits in learning and memory. Secondly, we point out that estrogen produces a striking difference in emotional memories in men and women, which leads them to display sex-specific differences in underlying neuronal signaling. Lastly, we discuss that fluctuations in estrogen levels in men and women are related to neuropsychiatric disorders, including schizophrenia, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BPD), major depressive disorder (MDD), substance use disorder (SUD), and anxiety disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Depressivo Maior , Humanos , Feminino , Masculino , Transtorno do Espectro Autista/genética , Caracteres Sexuais , Transtorno Depressivo Maior/metabolismo , Estrogênios/metabolismo , Sinapses/metabolismo , Emoções
7.
Food Chem X ; 21: 101164, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38328698

RESUMO

Thus far, little is known about whether jackfruit flake, a byproduct of jackfruit, can be used as a fermentation substrate to obtain value-added products through microbial fermentation. Here, jackfruit flake puree was fermented by three different ways: spontaneous fermentation (JF), inoculated with LAB (JFL), inoculated co-fermentation with LAB and yeast (JFC). In contrast to JF, the total polyphenol and flavonoid content and syndrome-associated enzyme inhibition are significantly increased in JFC at the end of fermentation. Electronic tongue analysis revealed that the JFC was significantly lower in astringency and higher in bitterness. 41 volatile compounds were identified during fermentation by HS-SPME-GC-MS, and JFC was richer in honey, rose, and fruity flavors. A total of 290 compounds were screened for discriminative pre- and post-fermentation differential metabolites by non-target metabolomics analysis. These results provide a potential reference for the conversion of jackfruit waste into functional products using fermentation.

8.
Fish Shellfish Immunol ; 147: 109467, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423489

RESUMO

LEAP2 (liver expression antimicrobial peptide 2), is an antimicrobial peptide widely found in vertebrates and mainly expressed in liver. LEAP2 plays a vital role in host innate immunity. In teleosts, a number of LEAP2 homologs have been reported, but their in vivo effects on host defense are still limited. In this study, a LEAP2 homolog (SsLEAP2) was identified from black rockfish, Sebastes schlegelii, and its structure, expression as well as biological functions were analyzed. The results showed that the open reading frame of SsLEAP2 is 300 bp, with a 5'- untranslated region (UTR) of 375 bp and a 3' - UTR of 238 bp. The deduced amino acid sequence of SsLEAP2 shares the highest overall identity (96.97%) with LEAP2 of Sebastes umbrosus. SsLEAP2 possesses conserved LEAP2 features, including a signal peptide sequence, a prodomain and a mature peptide, in which four well-conserved cysteines formed two intrachain disulphide domain. The expression of SsLEAP2 was highest in liver and could be induced by experimental infection with Listonella anguillarum, Edwardsiealla piscicida and Rock bream iridovirus C1 (RBIV-C1). Recombinant SsLEAP2 (rSsLEAP2) purified from Escherichia coli was able to bind with various Gram-positive and Gram-negative bacteria. Further analysis showed that rSsLEAP2 could enhance the respiratory burst activity, and induce the expression of immune genes including interleukin 1-ß (IL-1ß) and serum amyloid A (SAA) in macrophages; additionally, rSsLEAP2 could also promote the proliferation and chemotactic of peripheral blood lymphocytes (PBLs). In vivo experiments indicated that overexpression of SsLEAP2 could inhibit bacterial infection, and increase the expression level of immune genes including IL-1ß, tumor necrosis factor ligand superfamily member 13B (TNF13B) and haptoglobin (HP); conversely, knock down of SsLEAP2 promoted bacterial infection and decreased the expression level of above genes. Taken together, these results suggest that SsLEAP2 is a novel LEAP2 homolog that possesses apparent antibacterial activity and immunoregulatory property, thus plays a critical role in host defense against pathogens invasion.


Assuntos
Infecções Bacterianas , Doenças dos Peixes , Perciformes , Animais , Peixes , Proteínas de Peixes/genética , Hepcidinas/genética , Antibacterianos , Bactérias Gram-Negativas , Filogenia , Bactérias Gram-Positivas , Imunidade Inata/genética , Peptídeos Antimicrobianos
9.
BMC Cancer ; 24(1): 111, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254070

RESUMO

BACKGROUND: Myelodysplastic syndrome (MDS) is known to arise through the pathogenic bone marrow mesenchymal stem cells (MSC) by interacting with hematopoietic stem cells (HSC). However, due to the strong heterogeneity of MDS patients, it is difficult to find common targets in studies with limited sample sizes. This study aimed to describe sequential molecular changes and identify biomarkers in MSC of MDS transformation. METHODS: Multidimensional data from three publicly available microarray and TCGA datasets were analyzed. MDS-MSC was further isolated and cultured in vitro to determine the potential diagnostic and prognostic value of the identified biomarkers. RESULTS: We demonstrated that normal MSCs presented greater molecular homogeneity than MDS-MSC. Biological process (embryonic skeletal system morphogenesis and angiogenesis) and pathways (p53 and MAPK) were enriched according to the differential gene expression. Furthermore, we identified HOXB3 and HOXB7 as potential causative genes gradually upregulated during the normal-MDS-AML transition. Blocking the HOXB3 and HOXB7 in MSCs could enhance the cell proliferation and differentiation, inhibit cell apoptosis and restore the function that supports hematopoietic differentiation in HSCs. CONCLUSION: Our comprehensive study of gene expression profiling has identified dysregulated genes and biological processes in MSCs during MDS. HOXB3 and HOXB7 are proposed as novel surrogate targets for therapeutic and diagnostic applications in MDS.


Assuntos
Genes Homeobox , Proteínas de Homeodomínio , Células-Tronco Mesenquimais , Síndromes Mielodisplásicas , Humanos , Biomarcadores , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Síndromes Mielodisplásicas/genética
10.
World J Gastrointest Oncol ; 16(1): 1-7, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38292836

RESUMO

Four major studies (Checkmate577, Keynote-590, Checkmate649 and Attraction-4) of locally advanced esophageal cancer published in 2020 have established the importance of immunotherapy, represented by anti-programmed death protein (PD)-1 in postoperative adjuvant treatment and advanced first-line treatment of locally advanced or advanced esophageal cancer and esophagogastric junction cancer, from the aspects of proof of concept, long-term survival, overall survival rate and progression-free survival. For unresectable or inoperable nonmetastatic esophageal cancer, concurrent radiotherapy and chemotherapy is the standard treatment recommended by various guidelines. Because its curative effect is still not ideal, it is necessary to explore radical radiotherapy and chemotherapy in the future, and it is considered to be promising to combine them with immunotherapeutic drugs such as anti-PD-1. This paper mainly discusses how to combine radical concurrent radiotherapy and chemotherapy with immunotherapy for unresectable local advanced esophageal cancer.

11.
Eur J Med Chem ; 265: 116027, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38128236

RESUMO

The Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) is a convergent node for oncogenic cell-signaling cascades. Consequently, SHP1 represents a potential target for drug development in cancer treatment. The development of efficient methods for rapidly tracing and modulating the SHP1 activity in complex biological systems is of considerable significance for advancing the integration of diagnosis and treatment of the related disease. Thus, we designed and synthesized a series of imidazo[1,2,4] triazole derivatives containing salicylic acid to explore novel scaffolds with inhibitory activities and good fluorescence properties for SHP1. The photophysical properties and inhibitory activities of these imidazo[1,2,4] triazole derivatives (5a-5y) against SHP1PTP were thoroughly studied from the theoretical simulation and experimental application aspects. The representative compound 5p exhibited remarkable fluorescence response (P: 0.002) with fluorescence quantum yield (QY) of 0.37 and inhibitory rate of 85.21 ± 5.17% against SHP1PTP at the concentration of 100 µM. Furthermore, compound 5p showed obvious aggregation caused quenching (ACQ) effect and had high selectivity for Fe3+ ions, good anti-interference and relatively low detection limit (5.55 µM). Finally, the cellular imaging test of compound 5p also exhibited good biocompatibility and certain potential biological imaging application. This study provides a potential way to develop molecules with fluorescent properties and bioactivities for SHP1.


Assuntos
Proteínas Tirosina Fosfatases , Transdução de Sinais , Fluorescência , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Triazóis/farmacologia
12.
Acta Pharm Sin B ; 13(12): 4934-4944, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045040

RESUMO

Nuclear transporter importin-ß1 is emerging as an attractive target by virtue of its prevalence in many cancers. However, the lack of druggable inhibitors restricts its therapeutic proof of concept. In the present work, we optimized a natural importin-ß1 inhibitor DD1 to afford an improved analog DD1-Br with better tolerability (>25 folds) and oral bioavailability. DD1-Br inhibited the survival of castration-resistant prostate cancer (CRPC) cells with sub-nanomolar potency and completely prevented tumor growth in resistant CRPC models both in monotherapy (0.5 mg/kg) and in enzalutamide-combination therapy. Mechanistic study revealed that by targeting importin-ß1, DD1-Br markedly inhibited the nuclear accumulation of multiple CRPC drivers, particularly AR-V7, a main contributor to enzalutamide resistance, leading to the integral suppression of downstream oncogenic signaling. This study provides a promising lead for CRPC and demonstrates the potential of overcoming drug resistance in advanced CRPC via targeting importin-ß1.

13.
J Orthop Surg Res ; 18(1): 890, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993867

RESUMO

Osteosarcoma is a common malignant bone tumor. Cisplatin (DDP) achieves a high response rate in osteosarcoma. Here we aim to study the dysregulation of long non-coding RNA the growth arrest-specific transcript 5 (GAS5), and its roles in DDP-resistance of osteosarcoma. The expression of mRNA and microRNA in osteosarcoma tissues and osteosarcoma cell lines were detected by quantitative reverse-transcription polymerase chain reaction, and protein expression levels were measured by western blotting assay. Cell Counting Kit-8 and 5-Ethynyl-2'-deoxyuridine were used to measure cell proliferation. Flow cytometer assay was used to evaluate cell apoptosis. The interactions between miR-26b-5p and GAS5 or tumor protein p53-induced nuclear protein 1 (TP53INP1) were verified by dual luciferase reporter along with biotin RNA pull-down assays. GAS5 was identified to be significantly lowly expressed in osteosarcoma samples especially in cisplatin-resistant (DDP-resistant) tissues. GAS5 was also downregulated in DDP-resistant cells. Over-expressed GAS5 prominently increased the sensitivity of osteosarcoma cells to DDP in vitro. Furthermore, over-expression of GAS5 suppressed cell proliferation and facilitated apoptosis of DDP-resistant cells. Mechanistically, GAS5 sponged miR-26b-5p, over-expression of which reversed the effects of GAS5 on cell proliferation and apoptosis of DDP-resistant cells. In addition, miR-26b-5p targeted TP53INP1. TP53INP1 abrogated the functions of miR-26b-5p on cell proliferation and apoptosis in DDP-resistant cells. Taken together, GAS5 enhanced the sensitivity of osteosarcoma cells to DDP via GAS5/miR-26b-5p/TP53INP1 axis. Therefore, GAS5 may be a potential indicator for the management of osteosarcoma.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , RNA Longo não Codificante , Humanos , Cisplatino/farmacologia , RNA Longo não Codificante/genética , Proteína Supressora de Tumor p53 , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Proliferação de Células/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Proteínas de Transporte/genética , Proteínas de Choque Térmico/metabolismo
14.
Radiat Oncol ; 18(1): 194, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031125

RESUMO

PURPOSE: To report the planning benchmark case results of the POTENTIAL trial-a multicenter, randomized, phase 3 trial-to evaluate the value of internal mammary nodal (IMN) irradiation for patients with high-risk breast cancer. METHODS: All participating institutions were provided the outlines of one benchmark case, and they generated radiation therapy plans per protocol. The plans were evaluated by a quality assurance team, after which the institutions resubmitted their revised plans. The information on beams arrangement, skin flash, inhomogeneity corrections, and protocol compliance was assessed in the first and final submission. RESULTS: The plans from 26 institutions were analyzed. Some major deviations were found in the first submission. The protocol compliance rates of dose coverage for the planning target volume of chest wall, supraclavicular fossa plus axilla, and IMN region (PTVim) were all significantly improved in the final submission, which were 96.2% vs. 69.2%, 100% vs. 76.9%, and 88.4% vs. 53.8%, respectively. For OARs, the compliance rates of heart Dmean, left anterior descending coronary artery V40Gy, ipsilateral lung V5Gy, and stomach V5Gy were significantly improved. In the first and final submission, the mean values of PTVim V100% were 79.9% vs. 92.7%; the mean values of heart Dmean were 11.5 Gy vs. 9.7 Gy for hypofractionated radiation therapy and 11.5 Gy vs. 11.0 Gy for conventional fractionated radiation therapy, respectively. CONCLUSION: The major deviations were corrected and protocol compliance was significantly improved after revision, which highlighted the importance of planning benchmark case to guarantee the planning quality for multicenter trials.


Assuntos
Neoplasias da Mama , Radioterapia de Intensidade Modulada , Humanos , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Benchmarking , Mastectomia , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco/efeitos da radiação
15.
Front Oncol ; 13: 1273719, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023243

RESUMO

Primary cutaneous follicle center lymphoma (PCFCL) differs from follicular lymphoma in biological behavior and molecular profile and is treated as a distinct entity, according to the 5th edition of the World Health Organization classification of hematolymphoid tumors. It is an uncommon cutaneous B-cell lymphoma that is considerably rare in children and adolescents. To date, only 13 cases of individuals younger than 20 years of age have been reported in the literature. The lack of relevant clinical epidemiological data in this population has hampered the investigation of its clinical and diagnostic aspects. Here we report the case of a 17-year-old male with PCFCL, who may be the first PCFCL patient under 20 years of age reported in China. He was admitted to the hospital with a solitary nodule on his face. After complete surgical excision, the patient's facial mass was histologically identified as PCFCL. The patient's prognosis was favorable, with no recurrence at 17 months of follow-up after the surgical resection. We present a case of an adolescent PCFCL patient and systematically review the literature with a view to increase the awareness of the disease and inform the diagnosis and treatment of this age group.

16.
Funct Integr Genomics ; 23(4): 309, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37735249

RESUMO

Estrogen (E2) modulates the synaptic structure and plasticity in the hippocampus. Previous studies showed that E2 fluctuations during various phases of the menstrual cycle produce subtle neurosynaptic changes that impact women's behavior, emotion, and cognitive functions. In this study, we explored the transcriptome of the hippocampus via RNA-seq (RNA-sequencing) between proestrus (PE) and diestrus (DE) stages in young female rats to determine the effect of E2 of PE and DE stages on hippocampal gene expression. We identified 238 genes (at 1.5-fold-change selection criteria, FDR adjusted p-value < 0.05) as differentially expressed genes (DEGs) that responded to E2 between PE and DE stages. Functional analysis based on Gene Ontology (GO) revealed that a higher E2 level corresponded to an increase in gene transcription among most of the DEGs, suggesting biological mechanisms operating differentially in the hippocampus of female rats between PE and DE stages in the estrus cycle; while analysis with Kyoto Encyclopedia of Genes and Genomes database (KEGG) found that the DEGs involving neuroactive ligand-receptor interaction, antigen processing, cell adhesion molecules, and presentation were upregulated in PE stage, whereas DEGs in pathways relating to bile secretion, coagulation cascades, osteoclast differentiation, cysteine and methionine metabolism were upregulated in DE stage of the estrus cycle. The high-fold expression of DEGs was confirmed by a follow-up quantitative real-time PCR. Our findings in this current study have provided fundamental information for further dissection of neuro-molecular mechanisms in the hippocampus in response to E2 fluctuation and its relationship with disorders.


Assuntos
Cisteína , Transcriptoma , Humanos , Animais , Feminino , Ratos , Estrogênios , Estro , Hipocampo
17.
Breast Cancer Res Treat ; 202(3): 595-606, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37695401

RESUMO

PURPOSE: The overexpression of mitotic kinase monopolar spindle 1 (Mps1) has been identified in many tumor types, and targeting Mps1 for tumor therapy has shown great promise in multiple preclinical cancer models. However, the role played by Mps1 in tamoxifen (TAM) resistance in breast cancer has never been reported. METHODS: The sensitivity of breast cancer cells to tamoxifen was analysed in colony formation assays and wound healing assays. Enhanced transactivational activity of estrogen receptor α (ERα) led by Mps1 overexpression was determined by luciferase assays. The interaction between Mps1 and ERα was verified by co-immunoprecipitation and proximity ligation assay. Phosphorylation of ERα by Mps1 was detected by in vitro kinase assay and such phosphorylation process in vivo was proven by co-immunoprecipitation. The potential phosphorylation site(s) of ERα were analyzed by mass spectrometry. RESULTS: Mps1 determines the sensitivity of breast cancer cells to tamoxifen treatment. Mps1 overexpression rendered breast cancer cells more resistant to tamoxifen, while an Mps1 inhibitor or siMps1 oligos enabled cancer cells to overcome tamoxifen resistance. Mechanistically, Mps1 interacted with estrogen receptor α and stimulated its transactivational activity in a kinase activity-dependent manner. Mps1 was critical for ERα phosphorylation at Thr224 amino acid site. Importantly, Mps1 failed to enhance the transactivational activity of the ERα-T224A mutant. CONCLUSION: Mps1 contributes to tamoxifen resistance in breast cancer and is a potential therapeutic that can overcome tamoxifen resistance in breast cancer.

18.
Chemosphere ; 340: 139866, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633603

RESUMO

In this paper, the degradation of o-DCB under different gas-phase parameter conditions was investigated using the SDBD-NTP system. The results showed that the increase in initial and oxygen concentrations had opposite effects on the degradation of o-DCB. Among them, the increase of oxygen concentration promoted the degradation of o-DCB. Relative humidity promoted and then inhibited the degradation of o-DCB. The highest degradation efficiency of o-DCB was achieved at RH = 15%, reaching 91% at 29W. In the study of by-products, it was found that O3 and NOx were the main inorganic by-products, and that different oxygen levels and relative humidity conditions had a large effect on the production of O3 and NOx. In all of them, the concentration of O3 decreased with the increase of input power. NOx increased with increasing oxygen concentration, but the increase in relative humidity inhibited the production of NO and N2O and promoted the conversion of NO2. A study of organic by-products revealed this. In the absence of oxygen, a higher number of benzene products appeared. Whereas, with the addition of oxygen, only in the by-products under conditions where no relative humidity was introduced, benzene ring products were predominantly present in the by-products. However, when RH was added, n-hexane was found to be present in the by-products. This may be because the introduction of OH• favors the destruction of the benzene ring. Finally, the possible reaction pathways and reaction mechanisms of o-DCB under different gas-phase parameters are given. It provides a reference for future related scientific research as well as scientific problems in practical applications.


Assuntos
Benzeno , Clorobenzenos , Oxigênio , Tecnologia
19.
J Microbiol Biotechnol ; 33(10): 1281-1291, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37559205

RESUMO

Infectious diseases caused by drug-resistant Escherichia coli (E. coli) pose a critical concern for medical institutions as they can lead to high morbidity and mortality rates. In this study, amygdalin exhibited anti-inflammatory and antioxidant activities, as well as other potentials. However, whether it could influence the drug-resistant E. coli-infected cells remained unanswered. Amygdalin was therefore tested in a cellular model in which human macrophages were exposed to resistant E. coli. Apoptosis was measured by flow cytometry and the lactate dehydrogenase (LDH) assay. Western immunoblotting and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were used to quantify interleukin-18 (IL-18), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6). The production of reactive oxygen species (ROS) in macrophages was detected by ROS kit. The expression of panapoptotic proteins in macrophages was measured by qRT-PCR and Western immunoblotting. Drug-Resistant E. coli inhibited cell viability and enhanced apoptosis in the cellular model. In cells treated with amygdalin, this compound can inhibit cell apoptosis and reduce the expression of pro - inflammatory cytokines such as IL-1ß, IL-18 and IL-6. Additionally, it decreases the production of PANoptosis proteins, Furthermore, amygdalin lowered the levels of reactive oxygen species induced by drug-resistant E. coli, in cells, demonstrating its antioxidant effects. Amygdalin, a drug with a protective role, alleviated cell damage caused by drug-resistant E. coli in human macrophages by inhibiting the PANoptosis signaling pathway.


Assuntos
Amigdalina , Humanos , Amigdalina/farmacologia , Interleucina-6/genética , Interleucina-18 , Escherichia coli/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo
20.
Front Immunol ; 14: 1181987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37449201

RESUMO

Pulmonary hypertension (PH) is a progressive, pulmonary vascular disease with high morbidity and mortality. Unfortunately, the pathogenesis of PH is complex and remains unclear. Existing studies have suggested that inflammatory factors are key factors in PH. Interleukin-6 (IL-6) is a multifunctional cytokine that plays a crucial role in the regulation of the immune system. Current studies reveal that IL-6 is elevated in the serum of patients with PH and it is negatively correlated with lung function in those patients. Since IL-6 is one of the most important mediators in the pathogenesis of inflammation in PH, signaling mechanisms targeting IL-6 may become therapeutic targets for this disease. In this review, we detailed the potential role of IL-6 in accelerating PH process and the specific mechanisms and signaling pathways. We also summarized the current drugs targeting these inflammatory pathways to treat PH. We hope that this study will provide a more theoretical basis for targeted treatment in patients with PH in the future.


Assuntos
Hipertensão Pulmonar , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Interleucina-6/metabolismo , Pulmão/patologia , Inflamação/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA