Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood ; 139(14): 2227-2239, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35051265

RESUMO

The process of platelet production has so far been understood to be a 2-stage process: megakaryocyte maturation from hematopoietic stem cells followed by proplatelet formation, with each phase regulating the peripheral blood platelet count. Proplatelet formation releases into the bloodstream beads-on-a-string preplatelets, which undergo fission into mature platelets. For the first time, we show that preplatelet maturation is a third, tightly regulated, critical process akin to cytokinesis that regulates platelet count. We show that deficiency in cytokine receptor-like factor 3 (CRLF3) in mice leads to an isolated and sustained 25% to 48% reduction in the platelet count without any effect on other blood cell lineages. We show that Crlf3-/- preplatelets have increased microtubule stability, possibly because of increased microtubule glutamylation via the interaction of CRLF3 with key members of the Hippo pathway. Using a mouse model of JAK2 V617F essential thrombocythemia, we show that a lack of CRLF3 leads to long-term lineage-specific normalization of the platelet count. We thereby postulate that targeting CRLF3 has therapeutic potential for treatment of thrombocythemia.


Assuntos
Plaquetas , Trombocitemia Essencial , Plaquetas/metabolismo , Humanos , Megacariócitos/metabolismo , Microtúbulos , Contagem de Plaquetas , Receptores de Citocinas , Trombocitemia Essencial/tratamento farmacológico , Trombopoese/genética
2.
Elife ; 92020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33295873

RESUMO

The metazoan endoplasmic reticulum (ER) serves both as a hub for maturation of secreted proteins and as an intracellular calcium storage compartment, facilitating calcium-release-dependent cellular processes. ER calcium depletion robustly activates the unfolded protein response (UPR). However, it is unclear how fluctuations in ER calcium impact organellar proteostasis. Here, we report that calcium selectively affects the dynamics of the abundant metazoan ER Hsp70 chaperone BiP, by enhancing its affinity for ADP. In the calcium-replete ER, ADP rebinding to post-ATP hydrolysis BiP-substrate complexes competes with ATP binding during both spontaneous and co-chaperone-assisted nucleotide exchange, favouring substrate retention. Conversely, in the calcium-depleted ER, relative acceleration of ADP-to-ATP exchange favours substrate release. These findings explain the rapid dissociation of certain substrates from BiP observed in the calcium-depleted ER and suggest a mechanism for tuning ER quality control and coupling UPR activity to signals that mobilise ER calcium in secretory cells.


Assuntos
Cálcio/deficiência , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteostase , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Células CHO , Cálcio/metabolismo , Cricetulus , Cristalografia por Raios X , Drosophila , Chaperona BiP do Retículo Endoplasmático , Escherichia coli , Citometria de Fluxo , Proteínas de Choque Térmico HSP70/metabolismo , Imunoprecipitação , Resposta a Proteínas não Dobradas
3.
Curr Cancer Drug Targets ; 20(8): 624-637, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32329689

RESUMO

BACKGROUND: Increasing evidence has shown that p62 plays an important role in tumorigenesis. However, relatively little is known about the association between p62 and tumor invasion and metastasis; in addition, its role in NPC (nasopharyngeal carcinoma, NPC) has been rarely investigated. OBJECTIVE: To investigate the effect of p62 on tumorigenesis and metastasis in nasopharyngeal carcinoma. METHODS: Western blotting, immunofluorescent staining and immunohistochemistry were used to evaluate p62 protein expression. Subsequently, cell viability, colony formation, migration, invasion and autophagy assays were performed. anti-p62 autoantibodies in sera were detected by ELISA. These data were correlated with clinicopathological parameters. RESULTS: We confirmed that p62 was significantly up-regulated in NPC tissues. Furthermore, high expression of p62 was observed in NPC cell lines, and especially in the highly metastatic 5-8F cells. In vitro, down-regulation of p62 inhibited proliferation, clone forming ability, autophagy, migration, and invasion in 5-8F cells, whereas p62 overexpression resulted in the opposite effects in 6-10B cells. Moreover, we confirmed that p62 promotes NPC cell proliferation, migration, and invasion by activating ERK (extracellular signal-regulated kinase, ERK). Clinical analysis indicated that high p62 expression correlates with lymph node and distant metastasis (P<0.05). Serum anti-p62 autoantibodies were increased in NPC patients and levels were associated with metastasis. CONCLUSION: Our data establish p62 targeting ERK as potential determinant in the NPC, which supplies a new pathway to treat NPC. Furthermore, p62 is a potential biomarker which might be closely related to the tumorigenesis and metastasis in NPC.


Assuntos
Autofagia , Biomarcadores Tumorais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Carcinoma Nasofaríngeo/secundário , Neoplasias Nasofaríngeas/patologia , Proteína Sequestossoma-1/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Invasividade Neoplásica , Prognóstico , Proteína Sequestossoma-1/genética , Transdução de Sinais , Taxa de Sobrevida , Células Tumorais Cultivadas
4.
Nat Commun ; 10(1): 541, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30710085

RESUMO

Despite its known role as a secreted neuroprotectant, much of the mesencephalic astrocyte-derived neurotrophic factor (MANF) is retained in the endoplasmic reticulum (ER) of producer cells. There, by unknown mechanisms, MANF plays a role in protein folding homeostasis in complex with the ER-localized Hsp70 chaperone BiP. Here we report that the SAF-A/B, Acinus, and PIAS (SAP) domain of MANF selectively associates with the nucleotide binding domain (NBD) of ADP-bound BiP. In crystal structures the SAP domain engages the cleft between NBD subdomains Ia and IIa, stabilizing the ADP-bound conformation and clashing with the interdomain linker that occupies this site in ATP-bound BiP. MANF inhibits both ADP release from BiP and ATP binding to BiP, and thereby client release. Cells lacking MANF have fewer ER stress-induced BiP-containing high molecular weight complexes. These findings suggest that MANF contributes to protein folding homeostasis as a nucleotide exchange inhibitor that stabilizes certain BiP-client complexes.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/metabolismo , Fatores de Crescimento Neural/metabolismo , Nucleotídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células CHO , Chlorocebus aethiops , Cricetulus , Cristalografia por Raios X , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Proteínas de Choque Térmico/química , Humanos , Modelos Biológicos , Fatores de Crescimento Neural/química , Ligação Proteica , Domínios Proteicos , Eletricidade Estática , Resposta a Proteínas não Dobradas
5.
Anal Bioanal Chem ; 411(2): 427-437, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30465161

RESUMO

Angiotensinogen (AGT) is a critical protein in the renin-angiotensin-aldosterone system and may have an important role in the pathogenesis of pre-eclampsia. The disulphide linkage between cysteines 18 and 138 has a key role in the redox switch of AGT which modulates the release of angiotensin I with consequential effects on blood pressure. In this paper, we report a quantitative targeted LC-MS/MS method for the reliable measurement of the total AGT and its reduced and oxidised forms in human plasma. AGT was selectively enriched from human plasma using two-dimensional chromatography employing concanavalin A lectin affinity and reversed phase steps and then deglycosylated using PNGase F. A differential alkylation approach was coupled with targeted LC-MS/MS method to identify the two AGT forms in the plasma chymotryptic digest. An additional AGT proteolytic marker peptide was identified and used to measure total AGT levels. The developed MS workflow enabled the reproducible detection of total AGT and its two distinct forms in human plasma with analytical precision of ≤ 15%. The LC-MS/MS assay for total AGT in plasma showed a linear response (R2 = 0.992) with a limit of quantification in the low nanomolar range. The method gave suitable validation characteristics for biomedical application to the quantification of the oxidation level and the total level of AGT in plasma samples collected from normal and pre-eclamptic patients.


Assuntos
Angiotensinogênio/sangue , Cromatografia Líquida , Espectrometria de Massas em Tandem , Angiotensinogênio/química , Fracionamento Químico , Quimotripsina , Humanos , Reprodutibilidade dos Testes
6.
Cancer Biol Ther ; 19(9): 809-824, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30067426

RESUMO

Nasopharyngeal carcinoma (NPC) is a highly prevalent disease in Southeast Asia. The disease is typically diagnosed in the later stages, and chemotherapy resistance often causes treatment failure. To investigate the underlying mechanisms of drug resistance, we searched for chemoresistant-associated proteins in NPC and drug-resistant NPC cell lines using isobaric tags for relative and absolute quantitation combined with nano liquid chromatography-tandem mass spectrometry. The chemoresistant NPC cell lines CNE1DDP and CNE2DDP were resistant to 1 mg/L cisplatin, had resistant indexes of 4.58 and 2.63, respectively, and clearly grew more slowly than the NPC cell lines CNE1 and CNE2. Using three technical replicates, we identified 690 nonredundant proteins, 56 of which were differentially expressed in both groups of cell lines (CNE1 vs. CNE1DDP and CNE2 vs. CNE2DDP). Gene Ontology, KEGG pathway, and miRNA analyses and protein-protein interactions of differentially expressed proteins showed that proteins TRIM29, HSPB1, CLIC1, ANXA1, and STMN1, among others, may play a role in the mechanisms of chemoresistance in clinical therapy. The chemotherapy-resistant proteomic profiles obtained may allow the identification of novel biomarkers for early detection of chemoresistance in NPC and other cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Proteoma , Proteômica , Biomarcadores Tumorais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Humanos , Concentração Inibidora 50 , Neoplasias Nasofaríngeas/patologia , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos , Relação Quantitativa Estrutura-Atividade , Espectrometria de Massas em Tandem
7.
Elife ; 62017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29064368

RESUMO

The endoplasmic reticulum (ER)-localized Hsp70 chaperone BiP contributes to protein folding homeostasis by engaging unfolded client proteins in a process that is tightly coupled to ATP binding and hydrolysis. The inverse correlation between BiP AMPylation and the burden of unfolded ER proteins suggests a post-translational mechanism for adjusting BiP's activity to changing levels of ER stress, but the underlying molecular details are unexplored. We present biochemical and crystallographic studies indicating that irrespective of the identity of the bound nucleotide AMPylation biases BiP towards a conformation normally attained by the ATP-bound chaperone. AMPylation does not affect the interaction between BiP and J-protein co-factors but appears to allosterically impair J protein-stimulated ATP-hydrolysis, resulting in the inability of modified BiP to attain high affinity for its substrates. These findings suggest a molecular mechanism by which AMPylation serves as a switch to inactivate BiP, limiting its interactions with substrates whilst conserving ATP.


Assuntos
Monofosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico/metabolismo , Processamento de Proteína Pós-Traducional , Adenosina Trifosfatases/química , Trifosfato de Adenosina/metabolismo , Animais , Cricetinae , Cristalografia por Raios X , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/química , Hidrólise , Modelos Moleculares , Ligação Proteica , Conformação Proteica
10.
World J Gastroenterol ; 5(1): 45-46, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11819384

RESUMO

AIM:To investigate hepatocarcinogenesis by detecting the effect of HCV NS(3) protein on p53 protein expression in hepatocellular carcinoma (HCC) and pericarcinomatous liver tissue (PCLT).METHODS:The expression of HCV NS(3) and p53 protein was detected with immunohistochemical technique (SP method) in specimens of HCC and PCLT from 47 patients with negative HBV.RESULTS:The positive rate of HCV NS(3) protein was lower in HCC (62%) than in PCLT (83%) (P < 0.025). The better differentiaton of cancer cells, the stronger expression of HCV NS(3) protein (P < 0.025). The positive rate of p53 protein in HCC (81%) was higher than in PCLT (47%) (P < 0.025). The worse differentiaton of cancer cells, the stronger expression of p53 protein (P < 0.05). The p53 protein expression was not correlated with the HCV NS(3) protein expression in HCC (P < 0.5), whereas their expression was closely related to PCLT (P < 0.01), and the expression rate of p53 protein in the cases of positive HCV NS(3) protein was higher than that in the cases of negative HCV NS(3) protein.CONCLUSION:HCV NS(3) protein may exert its hepatocarcinogenic effect in early stage on host cells by endogenous pathway which may bring about mutation of p53 gene and transformation of hepatocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA