Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 38(1): 2225135, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37325874

RESUMO

In this study, based on the effect of compounds on the activation of NF-κB and NO release, compound 51 was discovered as the best one with NO release inhibition IC50 value was 3.1 ± 1.1 µM and NF-κB activity inhibition IC50 value was 172.2 ± 11.4 nM. Compound 51 could inhibit the activation of NF-κB through suppressing phosphorylation and nuclear translocation of NF-κB, and suppress LPS-induced inflammatory response in RAW264.7 cells, such as the over-expression of TNF-α and IL-6, which were target genes of NF-κB. This compound also showed preferable anti-inflammatory activity in vivo, including alleviating significantly gastric distention and splenomegaly caused by LPS stimulation, reducing the level of oxidative stress induced by LPS, and inhibiting the expression of IL-6 and TNF-α in serum. Thus, it's reasonable to consider that this compound is a promising small molecule with anti-inflammatory effect for inhibiting the NF-κB signalling pathway.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Humanos , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo
2.
Chemosphere ; 310: 136767, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36241112

RESUMO

Cyanobacterial blooms negatively affect aquatic ecosystems and human health. Algicidal bacteria can efficiently kill bloom-causing cyanobacteria. Bacillus altitudinis G3 isolated from Dianchi Lake shows high algicidal activity against Microcystis aeruginosa. In this study, we investigated its algicidal characteristics including attack mode, photosynthesis responses, and source and the contribution of reactive oxygen species (ROS). The results showed that G3 efficiently and specifically killed M. aeruginosa mainly by releasing both thermolabile and thermostable algicidal substances, which exhibited the highest algicidal activity (99.8%, 72 h) in bacterial mid-logarithmic growth phase. The algicidal ratio under full-light conditions (99.5%, 60 h) was significantly higher than under dark conditions (<20%, P < 0.001). G3 filtrate caused photosystem dysfunction by decreasing photosynthetic efficiency, as indicated by significantly decreased Fv/Fm and PIABS (P < 0.001) values. It also inhibited photosynthetic electron transfer as indicated by significantly decreased rETR (P < 0.001), especially QA- downstream, as revealed by significantly decreased φEo and ψo, and increased Mo (P < 0.001). These results indicated that the algicidal activity of G3 filtrate is light-dependent, and the cyanobacterial photosystem is an important target. Cyanobacterial ROS and malondialdehyde contents greatly increased by 37.1% and 208% at 36 h, respectively. ROS levels decreased by 49.2% (9 h) when diuron (3-(3-4-dichlorophenyl)-1,1-dimethylurea) partially blocked photosynthetic electron transport from QA to QB. Therefore, excessive ROS were produced from disrupted photosynthesis, especially the inhibited electron transport area in QA- downstream, and caused severe lipid peroxidation with significantly increased MDA content and oxidative stress in cyanobacteria. The ROS scavenger N-acetyl-l-cysteine significantly decreased both cyanobacterial ROS levels (34%) and algicidal ratio (52%, P < 0.05) at 39 h. Thus, excessive ROS production due to G3 filtrate administration significantly contributed to its algicidal effect. G3 could be an excellent algicide to control M. aeruginosa blooms in waters under suitable light conditions.


Assuntos
Bacillus , Microcystis , Humanos , Espécies Reativas de Oxigênio/farmacologia , Ecossistema , Proliferação Nociva de Algas
3.
J Enzyme Inhib Med Chem ; 37(1): 2589-2597, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36128868

RESUMO

It is significant to design, synthesise and optimise flavonoid derivatives with better anti-inflammatory activity. This study aims to design and synthesise a series of novel 2-phenyl-4H-chromen-4-one compounds with anti-inflammatory; among them, compound 8 was discovered as the best one. And then, the effects of compound 8 on the TLR4/MAPK signalling pathway was carried out in vivo, the results indicated that compound 8 could downregulate NO, IL-6, and TNF-α expression, and suppress LPS-induced inflammation by inhibiting the TLR4/MAPK pathways. Furthermore, compound 8 reduced inflammation by a mouse model of LPS-induced inflammatory disease in vivo. The results suggest that compound 8 has the potential against inflammation through regulating TLR4/MAPK pathway and can be assessed further for drug development.


Assuntos
Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Flavonoides , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-6 , Lipopolissacarídeos/farmacologia , Camundongos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico
4.
Bioorg Chem ; 120: 105640, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35121555

RESUMO

On basis of Quercetin moiety, two series of 20 new compounds were designed and synthesized accordingly in this study, and their anti-inflammatory activities in vitro and in vivo were evaluated. At last, compound 8A2: 3- (1- (2- (4- (5-bromo-2-chlorobenzoyl) piperazin-1-yl) ethyl)-1H-1,2,3-triazol-4-yl) methoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one with low toxicity was found the best one for inhibiting of NO. Meanwhile, this compound could significantly inhibit the expression of IL-6 (Interleukin-6), TNF-α (Tumor necrosis factor-α) and IL-17 (Interleukin-17), and also significantly down-regulate IL-17 mRNA psoriasis model in vitro. Further studies were performed to establish mouse psoriasis model induced by Imiquimod (IMQ), and the preliminary mechanism indicated that compound 8A2 may alleviate mouse psoriasis through obstructed the JAK1/2-STAT1/3 pathway. This study should be provide a basis for further study of effective treatment of psoriasis.


Assuntos
Interleucina-17 , Psoríase , Animais , Modelos Animais de Doenças , Imiquimode/efeitos adversos , Interleucina-17/efeitos adversos , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo
5.
J Med Chem ; 64(16): 11857-11885, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34374541

RESUMO

Cathepsin C (Cat C) participates in inflammation and immune regulation by affecting the activation of neutrophil serine proteases (NSPs). Therefore, cathepsin C is an attractive target for treatment of NSP-related inflammatory diseases. Here, the complete discovery process of the first potent "non-peptidyl non-covalent cathepsin C inhibitor" was described with hit finding, structure optimization, and lead discovery. Starting with hit 14, structure-based optimization and structure-activity relationship study were comprehensively carried out, and lead compound 54 was discovered as a potent drug-like cathepsin C inhibitor both in vivo and in vitro. Also, compound 54 (with cathepsin C Enz IC50 = 57.4 nM) exhibited effective anti-inflammatory activity in an animal model of chronic obstructive pulmonary disease. These results confirmed that the non-peptidyl and non-covalent derivative could be used as an effective cathepsin C inhibitor and encouraged us to continue further drug discovery on the basis of this finding.


Assuntos
Anti-Inflamatórios/uso terapêutico , Catepsina C/antagonistas & inibidores , Inflamação/tratamento farmacológico , Inibidores de Proteases/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pirimidinas/uso terapêutico , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/toxicidade , Catepsina C/metabolismo , Linhagem Celular Tumoral , Descoberta de Drogas , Humanos , Inflamação/etiologia , Inflamação/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos Endogâmicos ICR , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/toxicidade , Ligação Proteica , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/patologia , Pirimidinas/síntese química , Pirimidinas/metabolismo , Pirimidinas/toxicidade , Ratos Sprague-Dawley , Relação Estrutura-Atividade
6.
Eur J Med Chem ; 213: 113043, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33257171

RESUMO

Cyclin-dependent kinase 8 (CDK8) plays an momentous role in transcription regulation by forming kinase module or transcription factor phosphorylation. A large number of evidences have identified CDK8 as an important factor in cancer occurrence and development. In addition, CDK8 also participates in the regulation of cancer cell stress response to radiotherapy and chemotherapy, assists tumor cell invasion, metastasis, and drug resistance. Therefore, CDK8 is regarded as a promising target for cancer therapy. Most studies in recent years supported the role of CDK8 as a carcinogen, however, under certain conditions, CDK8 exists as a tumor suppressor. The functional diversity of CDK8 and its exceptional role in different types of cancer have aroused great interest from scientists but even more controversy during the discovery of CDK8 inhibitors. In addition, CDK8 appears to be an effective target for inflammation diseases and immune system disorders. Therefore, we summarized the research results of CDK8, involving physiological/pathogenic mechanisms and the development status of compounds targeting CDK8, provide a reference for the feasibility evaluation of CDK8 as a therapeutic target, and guidance for researchers who are involved in this field for the first time.


Assuntos
Antineoplásicos/química , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Complexo Mediador/química , Inibidores de Proteínas Quinases/química , Animais , Antineoplásicos/farmacologia , Carcinógenos , Linhagem Celular Tumoral , Quinase 8 Dependente de Ciclina/genética , Ensaios de Seleção de Medicamentos Antitumorais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Complexo Mediador/farmacologia , Modelos Moleculares , Terapia de Alvo Molecular , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição/efeitos dos fármacos
7.
J Med Chem ; 63(6): 3327-3347, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32129996

RESUMO

Cyclin-dependent kinases (CDKs) are promising therapeutic targets for cancer therapy. Herein, we describe our efforts toward the discovery of a series of 5-chloro-N4-phenyl-N2-(pyridin-2-yl)pyrimidine-2,4-diamine derivatives as dual CDK6 and 9 inhibitors. Intensive structural modifications lead to the identification of compound 66 as the most active dual CDK6/9 inhibitor with balancing potency against these two targets and good selectivity over CDK2. Further biological studies revealed that compound 66 was directly bound to CDK6/9, resulting in suppression of their downstream signaling pathway and inhibition of cell proliferation by blocking cell cycle progression and inducing cellular apoptosis. More importantly, compound 66 significantly inhibited tumor growth in a xenograft mouse model with no obvious toxicity, indicating the promising therapeutic potential of CDK6/9 dual inhibitors for cancer treatment. Therefore, the above results are of great importance in the development of dual CDK6/9 inhibitors for cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/química , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/química , Quinase 9 Dependente de Ciclina/metabolismo , Humanos , Masculino , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Piridinas/administração & dosagem , Piridinas/síntese química , Piridinas/metabolismo , Pirimidinas/administração & dosagem , Pirimidinas/síntese química , Pirimidinas/metabolismo , Ratos Sprague-Dawley , Relação Estrutura-Atividade
8.
Chem Biol Interact ; 310: 108754, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31323227

RESUMO

Diabetic cardiomyopathy (DCM) is one of the leading causes of morbidity and mortality in diabetic patients. Piceatannol (PIC) has protective effects against cardiovascular disease; however, it remains unknown whether it also protects against DCM. A Cell Counting Kit-8 (CCK-8) assay was used to evaluate the effects of PIC on the viability of high glucose (HG)-induced H9C2 cells. Protein expression and mRNA levels were detected by western blotting and real-time polymerase chain reaction (RT-PCR), respectively. In vivo, physical and biochemical analyses, together with transthoracic echocardiography and hemodynamic measurements, were used to detect the effects of PIC treatment on cardiac function in DCM rats. Reactive oxygen species production was determined using an ELISA kit, and inflammatory cytokines were detected by RT-PCR. Pathological changes were assessed by hematoxylin-eosin staining, immunohistochemical staining, and TUNEL staining. According to the results, PIC treatment improved cell viability and inhibited cell apoptosis in HG-induced H9C2 cardiac myoblasts. In addition, PIC not only attenuated the over-production of interleukin-6 (IL-6) (P < 0.05) and tumor necrosis factor alpha (TNF-α) (P < 0.05), but also improved the expression of nuclear factor E2-related factor 2 (Nrf2) (P < 0.05) and heme oxygenase-1 (HO-1) (P < 0.01). Importantly, knockdown of Nrf2 suppressed PIC-mediated activation of the Nrf2/HO-1 pathway and abolished its anti-inflammatory effects. In vivo, oral administration of PIC suppressed STZ-induced inflammation, oxidative stress hypertrophy, fibrosis(myocardial collagen volume fraction in 5 mg/kg and 10 mg/kg PIC group was decreased 25.83% and 55.61% compared with the DM group), and apoptosis(Caspase-3 level in 5 mg/kg and 10 mg/kg PIC group was decreased 13.21% and 33.91% compared with the DM group), thereby relieving cardiac dysfunction and improving both fibrosis and pathological changes in cardiac tissues of diabetic rats. These findings define for the first time that the effects of PIC against DCM can be attributed to its role in inflammation and oxidative stress inhibition.


Assuntos
Cardiomiopatias Diabéticas/tratamento farmacológico , Inflamação/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais , Estilbenos/farmacologia , Animais , Linhagem Celular , Heme Oxigenase-1/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Ratos , Estilbenos/uso terapêutico
9.
Oxid Med Cell Longev ; 2019: 9496419, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984342

RESUMO

BACKGROUND: Cardiomyocyte apoptosis is critical for the development of coxsackievirus B3- (CVB3-) induced myocarditis, which is a common cardiac disease that may result in heart failure or even sudden death. Previous studies have associated CVB3-induced apoptosis with the downregulation of antiapoptotic proteins. Here, attempts were made to examine whether nicotinic acetylcholine receptors (nAChRs), especially α3ß4-nAChRs, were a novel therapeutic antiapoptotic target via the activation of survivin, a strong antiapoptotic protein, in viral myocarditis (VMC). METHODS AND RESULTS: In the present study, we demonstrated that nAChRs, α3ß4-nAChR subunits in particular, were present and upregulated in CVB3-infected neonatal rat cardiomyocytes (NRC) and H9c2 cells by RT-qPCR. The function of α3ß4-nAChRs was next examined using its specific blocker α-CTX AuIB in vitro. The results of the TUNEL assay and western blot experiments showed that the block of α3ß4-nAChRs abrogated nicotine-mediated protection of NRC from CVB3-induced apoptosis, and this effect displayed a substantial correlation with the protein expressions of pAkt, survivin, and Cleaved Caspase-3. Hence, the involvement of the PI3K/Akt pathway was further verified by LY294002, a selective inhibitor of PI3K. As a result, nicotine-mediated induction of pAkt and survivin was abolished by LY294002; meanwhile, apoptotic NRC were increased accompanied by an increase of Cleaved Caspase-3 expression. Regarding CVB3-infected BALB/c mice, the α-CTX AuIB- and LY294002-treated groups had a lower survival rate, deteriorative ventricular systolic function, and more severe inflammation than the nicotine-treated group and the modulation of pAkt, survivin, and Cleaved Caspase-3 protein expressions was similar to that in CVB3-infected NRC. In addition, we found that a nicotinic agonist reduced CVB3 replication in a dose-dependent manner in vitro, which indicates that nAChR activation may serve as a possible protection mechanism of CVB3-induced myocarditis. CONCLUSIONS: Our study demonstrated that α3ß4-nAChR subunits are essential in the nicotine-mediated antiapoptotic effect of protecting cardiomyocytes from CVB3-induced apoptosis in vivo and in vitro. This protection correlated with the PI3K/Akt pathway and the inducement of the antiapoptotic protein survivin. A combination of these mechanisms serves as a novel protective response to treat viral myocarditis.


Assuntos
Miocardite/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Agonistas Nicotínicos/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose , Humanos , Masculino , Camundongos , Agonistas Nicotínicos/farmacologia , Ratos , Survivina , Regulação para Cima
10.
Stem Cells Int ; 2017: 3258035, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29362568

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSCs) have recently been introduced to treat cardiovascular diseases, such as myocardial infarction and dilated cardiomyopathy. Nevertheless, there are few researches focused on the application of BMSCs in treating viral myocarditis, not to mention its optimal intervention timer potential mechanisms. In our study, we concentrated on finding an optimal time window to perform BMSCs treatment in a murine model of myocarditis induced by coxsackievirus B3 (CVB3). On the 1st day, 3rd day, 7th day, and 14th day after BALB/c mice were infected by CVB3, we intravenously injected equivalent BMSCs into the treatment groups. With a 28-day follow-up after inoculation, we found that the ventricular function was significantly improved in the BMSCs treatment group and cardiac fibrosis markedly ameliorated, especially when BMSCs were injected between 1 and 2 weeks after CVB3 inoculation. Furthermore, we demonstrated that after BMSCs treatment, the expressions of TGF-ß, col1α1, and col3α1 were significantly decreased. Therefore, we conclude that BMSCs may have a potential to improve CVB3-induced myocarditis by ameliorating cardiac fibrosis through the inhibition of TGF-ß expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA