Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Stem Cell Res ; 77: 103444, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761686

RESUMO

The NF1 gene is related to neurofibromatosis type 1 (NF1), which is an autosomal dominant disorder associated with multisystem involvement and epilepsy susceptibility. A human induced pluripotent stem cell (iPSC) line was derived from a pediatric patient with NF1 and epilepsy, harboring a heterozygous NF1 gene mutation. The iPSC line exhibits high levels of pluripotency markers, maintains the NF1 gene mutation, and demonstrates the capacity to undergo differentiation potential in vitro into three germ layers. The iPSC line will serve as a valuable resource for investigating the underlying mechanisms and conducting drug screening related to NF1 and NF1-associated epilepsy.


Assuntos
Epilepsia , Heterozigoto , Células-Tronco Pluripotentes Induzidas , Mutação , Neurofibromatose 1 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Neurofibromatose 1/genética , Neurofibromatose 1/patologia , Epilepsia/genética , Epilepsia/patologia , Neurofibromina 1/genética , Linhagem Celular , Diferenciação Celular , Masculino , Genes da Neurofibromatose 1
2.
Mol Neurobiol ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285286

RESUMO

Primary cilia are crucial for neurogenesis, and cilium-related genes are involved in the closure of neural tubes. Inositol polyphosphate-5-phosphatase (Inpp5e) was enriched in primary cilia and closely related to the occurrence of neural tube defects (NTDs). However, the role of Inpp5e in the development of NTDs is not well-known. To investigate whether Inpp5e gene is associated with the neural tube closure, we established a mouse model of NTDs by 5-fluorouracil (5-FU) exposure at gestational day 7.5 (GD7.5). The Inpp5e knockdown (Inpp5e-/-) mouse embryonic stem cells (mESCs) were produced by CRISPR/Cas9 system. The expressions of Inpp5e and other cilium-related genes including intraflagellar transport 80 (Ift80), McKusick-Kaufman syndrome (Mkks), and Kirsten rat sarcoma viral oncogene homolog (Kras) were determined, utilizing quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), western blot, PCR array, and immunofluorescence staining. The result showed that the incidence of NTDs was 37.10% (23 NTDs/62 total embryos) and significantly higher than that in the control group (P < 0.001). The neuroepithelial cells of neural tubes were obviously disarranged in NTD embryos. The mRNA and protein levels of Inpp5e, Ift80, Mkks, and Kras were significantly decreased in NTD embryonic brain tissues, compared to the control (P < 0.05). Knockdown of the Inpp5e (Inpp5e-/-) reduced the expressions of Ift80, Mkks, and Kras in mESCs. Furthermore, the levels of α-tubulin were significantly reduced in NTD embryonic neural tissue and Inpp5e-/- mESCs. These results suggested that maternal 5-FU exposure inhibited the expression of Inpp5e, which resulted in the downregulation of cilium-related genes (Ift80, Mkks, and Kras), leading to the impairment of primary cilium development, and ultimately disrupted the neural tube closure.

3.
Colloids Surf B Biointerfaces ; 230: 113505, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37574619

RESUMO

T-cell acute lymphocytic leukemia (T-ALL) is the most common cancer in children, with a low survival rate because of drug resistance and a high recurrence rate. Targeted delivery of chemotherapy drugs can reduce their side effects and improve their efficacy. The abnormality of phosphatidylinositol-3-kinase/protein kinase B/ mammalian target of rapamycin (PI3K/Akt/mTOR) pathway plays a key role in T-ALL occurrence. AZD5363 is a selective Akt inhibitor with promising therapeutic potential for tumors encoded by the PI3K/Akt/mTOR pathway. However, the toxicity and side effects have limited its application in treating T-ALL. This study aimed to design a delivery system for targeting AZD5363 to T-ALL by sgc8c aptamer designed as mesoporous silica (mSiO2) decorated with Au nanoparticles. The cell-specific targeting and cytotoxicity of mSiO2-Au-AZD5363-Apt were investigated. The mSiO2-Au nanovehicles were found feasible for AZD5363 delivery, with high loading efficiency and pH-responsive release in the acidic lysosome. More importantly, mSiO2-Au-AZD5363-Apt nanovehicles could specifically recognize and enter T-ALL cells in vitro and in vivo, effectively inhibiting the proliferation of CCRF-CEM cells. In conclusion, mSiO2-Au-AZD5363-Apt provided an effective therapeutic method for the targeted treatment of T-ALL.


Assuntos
Nanopartículas Metálicas , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Criança , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/uso terapêutico , Ouro/uso terapêutico , Serina-Treonina Quinases TOR
4.
Ecotoxicol Environ Saf ; 262: 115141, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37320917

RESUMO

Cytosine arabinoside (Ara-C) is one of the most widely used chemotherapeutic agents for hematological malignancies. The residues of Ara-C have been detected in wastewater and river water with increased usage and discharge. As the ability to cross the placenta and the teratogenicity at low ng/L levels, the toxic effects on pregnant women and infants have been concerned. The toxicity of Ara-C exposure on early embryonic neurodevelopment has not been fully elucidated. In this study, pregnant C57BL/6 mice were injected with different doses of Ara-C on Gestation day (GD) 7.5 and assessed on GD11.5 and GD13.5 to explore the neural developmental effects of Ara-C. HE staining, immunofluorescence, western blot, EdU assay, and flow cytometry were utilized to determine the toxic effects of Ara-C in vivo and in vitro. Our results showed that Ara-C (15-22.5 mg/kg body weight) induced the occurrence of neural tube defects (NTDs). The expression of PH3 was markedly reduced in embryos with Ara-C-induced NTDs, compared to the control group (P < 0.05). In contrast, cell apoptosis was markedly increased. Increased expression levels of GFAP and decreased Nestin were observed in the embryonic brain tissues in Ara-C induced NTDs. The level of ß-catenin was also decreased on both GD11.5 and GD13.5. These results were confirmed in vitro using mouse Sv129 embryonic stem cells (mESC). Ara-C at a dose comparable to the environment level (0.05 nM) had cytotoxicity. Impaired Wnt/ß-catenin signaling pathway is involved in Ara-C exposure induced imbalance between cell proliferation, apoptosis, and differentiation, which might contribute to Ara-C-induced occurrence of NTDs. Our data indicated the environmental concentration of Ara-C had cytotoxicity and that maternal exposure to Ara-C induced NTDs. These results might provide more information to understand the environmental toxic impact of Ara-C on neurodevelopment.

5.
Reprod Sci ; 30(5): 1585-1593, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36323916

RESUMO

Inositol is closely related to the occurrence of neural tube defects (NTDs). Inositol 1, 3, 4-trisphosphate 5/6-kinase (ITPK1) gene encoded an essential regulatory enzyme ITPK1, which is involved in inositol metabolism and has a critical role in the development of neural tube and axial mesoderm. It had been reported that some polymorphisms of critical genes in inositol pathways, including ITPK1, were associated with NTDs in Chinese pregnant women; however, the association between fetus ITPK1 polymorphisms and NTDs had not been reported. In a high incidence of NTDs region of China, a case-control study was performed to evaluate the association between fetal ITPK1 polymorphisms and NTDs. The ITPK1 polymorphisms were genotyped by iPLEX® Gold assay. Inositol levels in fetus brain tissues were analyzed. Three genetic polymorphisms of fetus ITPK1's, including rs3818175, rs2295394, and rs4586354, were statistically associated with spina bifida (NTD subtypes). A higher risk of spina bifida was associated with genotype GG of rs3818175, genotype CC of rs4586354, and genotype TT of rs2295394 (OR = 2.66, 95% CI [1.17-6.05], P = 0.017; OR = 2.22, 95% CI [1.02-4.80], P = 0.041; and OR = 2.33, 95% CI [1.00-5.48], P = 0.047), when compared with the other wild-type genotypes CC, TT, and CC, respectively. Decreased brain inositol level was found in NTDs fetuses, compared to normal controls. Inositol levels were found to significantly decrease with rs2295394 (CC genotype), rs4586354 (TT genotype), and rs3818175 (GC genotype) (P < 0.05). The polymorphisms of fetus ITPK1 were associated with the incidence of NTDs and might be a genetic risk factor for spina bifida.


Assuntos
Defeitos do Tubo Neural , Disrafismo Espinal , Feminino , Humanos , Gravidez , Estudos de Casos e Controles , Genótipo , Inositol , Defeitos do Tubo Neural/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Disrafismo Espinal/genética
6.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499158

RESUMO

Neural-tube defects (NTDs) are one type of the most serious birth defects. Studies have shown that inositol deficiency is closely related to the occurrence of NTDs. Bone morphogenetic protein (BMP)-mediated Smad signaling pathways have been implicated in neurogenesis and neural-tube closure. However, the role of the BMP/Smad pathway in inositol-deficiency-induced NTDs remains unclear. Inositol-deficiency models in C57 mice and mouse neural stem cells (mNSCs) were induced with Li2CO3 treatment or inositol withdrawal. The role of the BMP/Smad pathway in the regulation of cell proliferation and the development of NTDs was determined utilizing qRT-PCR, HE staining, Western blot, immunostaining, MTT assay, EdU staining, and flow cytometry. The intraperitoneal injection of Li2CO3 at Embryonic Day 7.5 induced the occurrence of NTDs. The mRNA levels of Bmp2, Bmp4, Smad1, Smad5, Smad8 and Runx2, the phosphorylation of Smad1/5/8, and the nuclear translocation of Runx2 were significantly increased in NTD embryonic brain tissues and mNSCs exposed to Li2CO3 or an inositol-free medium, which were suppressed by BMP receptor selective inhibitor LDN-193189. The Li2CO3-induced phosphorylation of Smad1/5/8 was inhibited by inositol supplementation. Cell proliferation was significantly promoted by Li2CO3 exposure or the absence of inositol in mNSCs, which was reversed by LDN-193189. These results suggest that the activation of the BMP/Smad signaling pathway might play an important role in the development of NTDs induced by maternal Li2CO3 exposure via inositol deficiency.


Assuntos
Células-Tronco Neurais , Defeitos do Tubo Neural , Camundongos , Animais , Carbonato de Lítio/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Transdução de Sinais/fisiologia , Proteína Smad1/genética , Proteína Smad1/metabolismo
7.
Neurochem Res ; 47(12): 3709-3722, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35960485

RESUMO

Chemotherapeutic agents such as methotrexate (MTX), raltitrexed (RTX), 5-fluorouracil (5-FU), hydroxyurea (HU), and retinoic acid (RA), and valproic acid (VPA), an antiepileptic drug, all can cause malformations in the developing central nervous system (CNS), such as neural tube defects (NTDs). However, the common pathogenic mechanisms remain unclear. This study aimed to explore the mechanisms of NTDs caused by MTX, RTX, 5-FU, HU, RA, and VPA (MRFHRV), based on network pharmacology and molecular biology experiments. The MRFHRV targets were integrated with disease targets, to find the potential molecules related to MRFHRV-induced NTDs. Protein-protein interaction analysis and molecular docking were performed to analyze these common targets. Utilizing the kyoto encyclopedia of genes and genomes (KEGG) signaling pathways, we analyzed and searched the possible causative pathogenic mechanisms by crucial targets and the signaling pathway. Results showed that MRFHRV induced NTDs through several key targets (including TP53, MAPK1, HSP90AA1, ESR1, GRB2, HDAC1, EGFR, PIK3CA, RXRA, and FYN) and multiple signaling pathways such as PI3K/Akt pathway, suggesting that abnormal proliferation and differentiation could be critical pathogenic contributors in NTDs induced by MRFHRV. These results were further validated by CCK8 assay in mouse embryonic stem cells and GFAP staining in embryonic brain tissue. This study indicated that chemotherapeutic and antiepileptic agents induced NTDs might through predicted targets TP53, MAPK1, GRB2, HDAC1, EGFR, PIK3CA, RXRA, and FYN and multiple signaling pathways. More caution was required for the clinical administration for women with childbearing potential and pregnant.


Assuntos
Antineoplásicos , Defeitos do Tubo Neural , Animais , Feminino , Camundongos , Gravidez , Anticonvulsivantes/efeitos adversos , Classe I de Fosfatidilinositol 3-Quinases , Receptores ErbB , Fluoruracila/efeitos adversos , Hidroxiureia/efeitos adversos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Defeitos do Tubo Neural/induzido quimicamente , Fosfatidilinositol 3-Quinases , Tretinoína/efeitos adversos , Ácido Valproico/efeitos adversos , Metotrexato/efeitos adversos , Antineoplásicos/efeitos adversos
8.
Int J Nanomedicine ; 17: 2191-2202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599749

RESUMO

Introduction: Acute myeloid leukemia (AML) is a heterogeneous clonal disorder of hematopoietic progenitor cells, and the AML cells are differentiation retarded which results in the hyperproliferation of those malignant tumor cells. To stop the uncontrollable proliferation, inducing the AML cell differentiation is one highly expected therapy because it can bring relatively low systematic side effects compared to conventional chemotherapies; however, there are few options of inductive therapeutics in the clinical applications so far. This study aims to investigate the differentiation-induction effects of lab-developed hydrophilic nanocrystals of As4S4 (ee-As4S4). Methods: In this work, ee-As4S4 was applied upon a refractory mouse model co-expressing AML1-ETO and HyC-KITD816V as well as a related human AML cell line, Kasumi-1, to investigate whether the nanocrystals can break the retardation of differentiation and drive the cells undergo apoptosis. Results: It was shown that ee-As4S4 induced the upregulation of surface markers CD11b, CD235a, and CD41a, which indicate granulocytic, erythroid, and megakaryocytic differentiation respectively, leading to the multiple-lineage differentiation and post-differentiation apoptosis, and the inhibition of histone deacetylase activity was largely involved with the differentiation-induction effects. In the AML mice, orally administered ee-As4S4 increased the level of Ter119, CD11b, and CD41 in bone marrow-derived leukemia cells while reducing the percentage of leukemic cells in the bone marrow. Also, ee-As4S4 improved the hemogram and relieved the hepatomegaly and splenomegaly of the AML mice. As a result, the survival of the AML mice was significantly prolonged. Importantly, ee-As4S4 did not cause acute or chronic toxicity in healthy mice. Conclusion: In conclusion, ee-As4S4 induced effective and multiple-lineage differentiation and apoptosis of AML cells in the refractory AML mouse model and cell line, suggesting that it holds promising potential as a novel inductive agent in differentiation therapy of AML.


Assuntos
Leucemia Mieloide Aguda , Nanopartículas , Animais , Apoptose , Arsenicais , Diferenciação Celular , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Camundongos , Sulfetos
9.
Biomater Sci ; 8(22): 6204-6211, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33078787

RESUMO

Chronic myeloid leukemia (CML) is a kind of hematological malignancy featured with retarded differentiation that is highly linked to the level of intracellular reactive oxygen species (ROS). In this work, ultra-small platinum nanoparticles deposited on gold nanorods (Au@Pt) were synthesized and applied on the CML cells. It was shown that Au@Pt had multienzyme-like activities that induced a fluctuation of the intracellular ROS level over the incubation time, depending on their temporal locations in the cells. The ROS fluctuation triggered cellular autophagy and enhanced the level of autophagic protein Beclin-1, which caused the degradation of fusion protein BCR-ABL, the key factor of retarded differentiation and led to the downregulation of phosphorylation of PI3K and AKT. These interactions together broke retarded differentiation and drove the CML cells to differentiate towards megakaryocytes, which is of great significance in enhancing leukemic cell apoptosis. Therefore, Au@Pt exhibited a novel function and promising therapeutic potential for the CML treatment.


Assuntos
Nanopartículas Metálicas , Nanotubos , Apoptose , Diferenciação Celular , Proteínas de Fusão bcr-abl , Ouro , Humanos , Células K562 , Platina , Espécies Reativas de Oxigênio
10.
Part Fibre Toxicol ; 16(1): 30, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300057

RESUMO

BACKGROUND: Iron oxide nanoparticles (IONPs) have been extensively studied in different biomedical fields. Recently, the non-cytotoxic concentration of IONPs induced cell-specific response raised concern of their safety. Endothelial cell exposure was unavoidable in their applications, while whether IONPs affect the phenotype of vascular endothelial cells is largely unknown. In this work, the effect of IONPs on endothelial-to-mesenchymal transition (EndMT) was investigated in vitro and in vivo. RESULTS: The incubation with γ-Fe2O3 nanoparticles modified with polyglucose sorbitol carboxymethyether (PSC-Fe2O3) at non-cytotoxic concentration induced morphological changes of human umbilical vein endothelial cells (HUVECs) from cobblestone-like to spindle mesenchymal-like morphology, while PSC-Fe2O3 mostly stay in the culture medium and intercellular space. At the same time, the endothelial marker CD31 and VE-cadherin was decreased along with the inhibitory of angiogenesis properties of HUVEC. Meanwhile, the mesenchymal marker α-smooth muscle actin (α-SMA) and fibroblast specific protein (FSP) was up regulated significantly, and the migration ability of the cells was enhanced. When ROS scavenger mannitol or AA was supplemented, the EndMT was rescued. Results from the in vivo study showed that, expression of CD31 was decreased and α-SMA increased in the liver, spleen and kidney of mice given PSC-Fe2O3, and the density of collagen fibers in the liver sinusoid of mice was increased. The supplementary mannitol or AA could reverse the degree of EndMT in the tissues. Mechanistic study in vitro indicated that the level of extracellular hydroxyl radicals (·OH) was up regulated significantly by PSC-Fe2O3, which induced the response of intracellular ROS and resulted in the EndMT effect on HUVECs. CONCLUSION: The PSC-Fe2O3 was capable of inducing EndMT in the endothelial cells at acutely non-cytotoxic dose due to its intrinsic peroxidase-like activity, though they were few taken up by endothelial cell. The EndMT effect on HUVEC can be rescued by ROS scavenger in vitro and in vivo.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Compostos Férricos/toxicidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Nanopartículas/toxicidade , Actinas/metabolismo , Antígenos CD/genética , Caderinas/genética , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Compostos Férricos/química , Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Nanopartículas/química , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética
11.
AIDS Res Hum Retroviruses ; 25(8): 757-63, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19618996

RESUMO

This study aimed to assess levels of ART adherence and to examine the relationship between adherence and treatment outcomes. A longitudinal study in Hunan and Hubei provinces used the CPCRA Antiretroviral Medication Self-Report and a 7-day Visual Analogue Scale to assess levels of adherence, while quality of life was evaluated using SF-36. CD4 cell count and the number, duration, and cost of hospitalizations were collected from participant medical records. Measurements were obtained at baseline, month 3, and month 6. A total of 113 participants enrolled and 98 completed the study. The mean level of adherence was 91%, 89%, and 88% at baseline and at 3 and 6 months, respectively. Of participants, 54/98 (58%) reported taking all doses at all three interviews and were classified as consistent adherers (CA). CAs had better physical function (p = 0.001), general health (p = 0.009), vitality (p = 0.016), social functioning (p = 0.001), and mental health (p = 0.023), and presented a higher CD4 cell count (p = 0.028). CAs also had fewer hospital admissions and readmissions (p = 0.005), shorter hospital stays (p = 0.005), and lower hospital expenses (p = 0.006). Consistent adherence is associated with better outcomes including improved quality of life, higher CD4 counts, and lower health care costs.


Assuntos
Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV/efeitos dos fármacos , Custos Hospitalares , Adesão à Medicação , Qualidade de Vida , Adulto , Idoso , Contagem de Linfócito CD4 , China , Feminino , Infecções por HIV/economia , Infecções por HIV/imunologia , Infecções por HIV/psicologia , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA