Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047066

RESUMO

Fraxinus rhynchophylla Hance bark has been used to treat patients with inflammatory or purulent skin diseases in China, Japan, and Korea. This study was undertaken to determine the mechanism responsible for the effects of F. rhynchophylla and whether it has a therapeutic effect in mice with contact dermatitis (CD). In this study, the active compounds in F. rhynchophylla, their targets, and target gene information for inflammatory dermatosis were investigated using network-based pharmacological analysis. Docking analysis was conducted using AutoDock Vina. In addition, the therapeutic effect of an ethanolic extract of F. rhynchophylla (EEFR) on skin lesions and its inhibitory effects on histopathological abnormalities, inflammatory cytokines, and chemokines were evaluated. Finally, its inhibitory effects on the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathways were observed in RAW 264.7 cells. In our results, seven active compounds were identified in F. rhynchophylla, and six were associated with seven genes associated with inflammatory dermatosis and exhibited a strong binding affinity (<-6 kcal/mol) to prostaglandin G/H synthase 2 (PTGS2). In a murine 1-fluoro-2,4-dinitrobenzene (DNFB) model, topical EEFR ameliorated the surface symptoms of CD and histopathological abnormalities. EEFR also reduced the levels of tumour necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-6, and monocyte chemotactic protein (MCP)-1 in inflamed tissues and inhibited PTGS2, the nuclear translocation of NF-κB (p65), and the activation of c-Jun N-terminal kinases (JNK) in RAW 264.7 cells. In conclusion, the bark of F. rhynchophylla has potential use as a therapeutic or cosmetic agent, and the mechanism responsible for its effects involves the suppression of inflammatory mediators, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IκB)-α degradation, the nuclear translocation of NF-κB, and JNK phosphorylation.


Assuntos
Dermatite de Contato , Fraxinus , Animais , Camundongos , NF-kappa B/metabolismo , Fraxinus/metabolismo , Ciclo-Oxigenase 2/metabolismo , Casca de Planta/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Dermatite de Contato/tratamento farmacológico , Interleucina-6 , Lipopolissacarídeos/farmacologia , Óxido Nítrico
2.
Chin J Integr Med ; 28(8): 719-724, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35907172

RESUMO

OBJECTIVE: To investigate the anti-inflammatory potential of Ampelopsis japonica on contact dermatitis (CD). METHODS: A total of 38 Balb/c mice were divided into 5 groups by using a random number table: normal mice (n=6), CD model mice (n=8), CD mice treated with 3 or 30 mg/kg of the ethanol extract of A. japonica (EEAJ, n=8) and 7.5 mg/kg dexamethasone treated CD mice (DEX, n=8). CD was induced using topical application of 1-fluoro-2,4-dinitrofluorobenzene in mice. EEAJ and DEX were topically applied to the shaved skin of each mouse for 6 days, and the effects of EEAJ and DEX on skin lesions and color, histopathological abnormalities such as epidermal hyperplasia and immune cell infiltration, and tumor necrosis factor (TNF)-α, interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) production were investigated. The effects on changes in body weights and spleen/body weight ratio were also investigated. RESULTS: EEAJ at 30 mg/kg significantly prevented scaling, erythema and enlargement of skin weight compared to using carbon dioxide. EEAJ also prevented epithelial hyperplasia and immune cell infiltrations induced by repeated application of DNFB (P<0.01). In addition, EEAJ significantly lowered levels of TNF-α, IL-6 and MCP-1 (P<0.05 or P<0.01). The anti-inflammatory effects of EEAJ were similar to those of DEX. CONCLUSION: A. japonica may be a new therapeutic agent with the potential to reduce or replace corticosteroids and its mechanisms are closely related to regulation of TNF-α production.


Assuntos
Ampelopsis , Dermatite de Contato , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas , Dermatite de Contato/tratamento farmacológico , Dermatite de Contato/patologia , Dinitrofluorbenzeno/uso terapêutico , Hiperplasia/tratamento farmacológico , Interleucina-6 , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fator de Necrose Tumoral alfa
3.
J Ethnopharmacol ; 271: 113843, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33493588

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The flower buds of Sophora japonica L. are a major traditional medicine in China, Japan, and Korea and are used to stop bleeding and 'cool the blood'. Accordingly, they are used to treat bleeding haemorrhoids, hypertension, and pyoderma. In addition, it was recently found that the flower buds of S. japonica (SJ) have cosmetic whitening properties. MATERIALS AND METHODS: Compounds in SJ and their targets and related diseases were investigated using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and analysis platform. Target gene information was obtained from the UniProt database. Network construction was carried out using Cytoscape 3.72. Contact dermatitis (CD)-related gene searching was performed using the Cytoscape string App. Docking analysis was conducted using AutoDock Vina. Six-week-old Balb/c male mice with DNFB (1-fluoro-2,4-dinitrofluorobenzene)-induced CD were treated with a methanol extract of the flower buds of S. japonica (MESJ), and its effects on skin colour, lesions, and immune cell infiltration, and on histopathological abnormalities such as epidermal hyperplasia were investigated. RESULTS: Eleven compounds targeted 13 CD-related genes, that is, serum albumin (ALB), prostaglandin G/H synthase (COX) 2, C-X-C motif chemokine (CXCL) 2, CXCL10, ICAM1, IFN-γ, IL-10, IL-1α, IL-1ß, IL-2, IL-6, E-selectin, and TNF. In the murine DNFB model, MESJ significantly suppressed scaling, erythema, and skin thickening as compared with DNFB controls and epithelial hyperplasia and immune cell infiltrations induced by repeated DNFB application. CONCLUSIONS: Our animal study showed that the mode of action of MESJ was closely related to the prevention of epithelial hyperplasia and immune cell infiltration. The results obtained demonstrated that the flower buds of S. japonica offer a potential means of treating CD, and suggest that the therapeutic mechanism of CD is explained by relations between 11 major components of SJ, including kaempferol and quercetin, and 13 CD-related genes.


Assuntos
Dermatite de Contato/tratamento farmacológico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Sophora/química , Animais , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Bases de Dados Factuais , Dermatite de Contato/etiologia , Dermatite de Contato/metabolismo , Dermatite de Contato/patologia , Dinitrofluorbenzeno/toxicidade , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Flores/química , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperplasia/induzido quimicamente , Hiperplasia/tratamento farmacológico , Hiperplasia/metabolismo , Hiperplasia/patologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Ceratose/induzido quimicamente , Ceratose/tratamento farmacológico , Ceratose/metabolismo , Ceratose/patologia , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular
4.
J Ethnopharmacol ; 260: 112988, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32446926

RESUMO

ETHNOPHAMACOLOGICAL RELEVANCE: Sam So Eum (SSE), used in traditional Korean medicine, has been prescribed for the treatment of various ailments including emesis, and fever for centuries. SSE is known by several different names (Shen Su Yin in traditional Chinese medicine; Jin So In traditional Japanese Kampo medicine). It is a mixture of medicinal plants including Panax ginseng C. A. Mey., Perilla frutescens (L.) Britton, and Peucedanum praeruptorum Dunn. Studies have revealed that SSE has many pharmacological effects including anti-inflammatory, anti-cancer, and anti-allergic properties, but its toxic effects have not been evaluated in vivo. Recently, the use of traditional medicinal herbs to treat various diseases has increased, owing to increased number of studies supporting their efficacy. However, safety evaluations for toxicity and other adverse effects have not been extensive. It is commonly considered that natural products extracted from traditional medicinal herbs are safer than synthetic drugs, but this lacks a scientific basis. Thus, in this study, we evaluated the toxicity of SSE in male and female rats. AIM OF THE STUDY: To evaluated the safety of SSE in male and female rats. MATERIALS AND METHODS: SSE was administered orally for 13 weeks at 1000, 2000, and 4000 mg kg-1·day-1, and then the rats were maintained for 4 weeks without SSE administration (recovery evaluation). RESULTS: We observed the animals for changes in clinical signs, including hematological parameters, and food consumption; serum chemistry profiling and urinalysis were also carried out. Creatinine levels in the serum were significantly increased following oral administration of SSE at 2000 and 4000 mg kg-1·day-1 in male and female rats, but returned to the normal levels during the recovery period. In addition, SSE administration does not cause kidney and liver toxicity. Thus, we determined that the no-observed-adverse-effect level of SSE is 4000 mg kg-1·day-1. The no-observed-effect level of SSE was determined to be 1000 mg kg-1·day-1, because serum creatinine was increased by oral administration of SSE at 2000 and 4000 mg kg-1·day-1 in male and female rats. CONCLUSIONS: SSE administration does not cause toxicity at 4000 mg kg-1·day-1 in male and female rats.


Assuntos
Creatinina/sangue , Extratos Vegetais/toxicidade , Testes de Toxicidade , Administração Oral , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Nível de Efeito Adverso não Observado , Extratos Vegetais/administração & dosagem , Ratos , Ratos Sprague-Dawley
5.
Pharmacogn Mag ; 14(54): 174-179, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29720827

RESUMO

BACKGROUND: Cabbage, Brassica oleracea var. capitata L., is one of the most common vegetables in the world. Because of its high levels of flavonoids and anthocyanins, cabbage has long been used as a herbal medicine. The antioxidant and anti-inflammatory properties of cabbage were also recently been reported. OBJECTIVE: This study was designed to investigate the anti-inflammatory effects of cabbage in mice with contact dermatitis (CD). MATERIALS AND METHODS: We investigated the effects of methanol extract of B. oleracea var. capitata L. (MEBO) on ear swelling, erythema, and histopathological changes in CD mice. Moreover, the effects on cytokine production and the spleen/body weight ratio were investigated. RESULTS: Topical treatment with MEBO inhibited ear swelling and erythema significantly. MEBO also significantly inhibited epidermal hyperplasia and infiltration of immune cells. Furthermore, the levels of tumor necrosis factor-alpha, interferon-gamma, interleukin-6, and monocyte chemotactic protein-1 in inflamed tissues were effectively lowered by MEBO. Finally, MEBO did not affect body weight gain or spleen body weight ratio. CONCLUSIONS: These results indicate that cabbage can be used for the treatment of skin inflammation and that its anti-inflammatory activity is closely related to the inhibition of Th1 skewing reactions. SUMMARY: MEBO inhibited ear thickness, weight, and erythema in inflamed skinMEBO also prevented epidermal hyperplasia and infiltration of immune cellsThe levels of tumor necrosis factor-α, interferon-γ, interleukin-6, and monocyte chemotactic protein-1 in inflamed tissues were lowered by MEBO. Abbreviations used: AOO: Acetone and olive oil (4:1), CBA: Cytometric bead array, CD: Contact dermatitis, DEX: Dexamethasone, DNFB: 1-fluoro-2,4-dinitrofluorobenzene, GM-CSF: Granulocyte-macrophage colony-stimulating factor, ICAM-1: Intercellular Adhesion Molecule-1, LPS: Lipopolysaccharide, MEBO: Methanol extract of Brassica oleracea, MCP-1: Monocyte chemotactic protein-1, NO: Nitric oxide.

6.
Mediators Inflamm ; 2016: 8027537, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27647952

RESUMO

The leaves of Artemisia argyi Lev. et Vant. and A. princeps Pamp. are well known medicinal herbs used to treat patients in China, Japan, and Korea with skin problems such as eczema and itching, as well as abdominal pain and dysmenorrhoea. We investigated the anti-inflammatory effects of Artemisia leaf extract (ALE) using CD mice and Raw 264.7 cells. The effects of ALE on histopathological changes and cytokine production in ear tissues were assessed in mice with CD induced by 1-fluoro-2,4-dinitrobenzene (DNFB). Moreover, the anti-inflammatory effects on production levels of prostaglandin E2 (PGE2) and nitric oxide (NO) and expression levels of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) were investigated in Raw 264.7 cells. Topical application of ALE effectively prevented ear swelling induced by repeated DNFB application. ALE prevented epidermal hyperplasia and infiltration of immune cells and lowered the production of interferon- (IFN-) gamma (γ), tumour necrosis factor- (TNF-) alpha (α), and interleukin- (IL-) 6 in inflamed tissues. In addition, ALE inhibited expression of COX-2 and iNOS and production of NO and PGE2 in Raw 264.7 cells. These results indicate that Artemisia leaf can be used as a therapeutic agent for inflammatory skin diseases and that its anti-inflammatory effects are closely related to the inhibition of inflammatory mediator release from macrophages and inflammatory cytokine production in inflamed tissues.


Assuntos
Anti-Inflamatórios/farmacologia , Artemisia/química , Dermatite de Contato/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , China , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinitrofluorbenzeno/química , Dinoprostona/metabolismo , Epiderme/patologia , Hiperplasia/metabolismo , Inflamação/tratamento farmacológico , Interferon gama/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/metabolismo , Folhas de Planta/química , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA