Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Transplant ; 33: 9636897241237049, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483119

RESUMO

Neuronal damage resulting from traumatic brain injury (TBI) causes disruption of neuronal projections and neurotransmission that contribute to behavioral deficits. Cellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an early event following TBI. ROS often damage DNA, lipids, proteins, and carbohydrates while RNS attack proteins. The products of lipid peroxidation 4-hydroxynonenal (4-HNE) and protein nitration 3-nitrotyrosine (3-NT) are often used as indicators of oxidative and nitrosative damages, respectively. Increasing evidence has shown that striatum is vulnerable to damage from TBI with a disturbed dopamine neurotransmission. TBI results in neurodegeneration, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy in the striatum and contribute to motor or behavioral deficits. Pomalidomide (Pom) is a Food and Drug Administration (FDA)-approved immunomodulatory drug clinically used in treating multiple myeloma. We previously showed that Pom reduces neuroinflammation and neuronal death induced by TBI in rat cerebral cortex. Here, we further compared the effects of Pom in cortex and striatum focusing on neurodegeneration, oxidative and nitrosative damages, as well as neuroinflammation following TBI. Sprague-Dawley rats subjected to a controlled cortical impact were used as the animal model of TBI. Systemic administration of Pom (0.5 mg/kg, intravenous [i.v.]) at 5 h post-injury alleviated motor behavioral deficits, contusion volume at 24 h after TBI. Pom alleviated TBI-induced neurodegeneration stained by Fluoro-Jade C in both cortex and striatum. Notably, Pom treatment reduces oxidative and nitrosative damages in cortex and striatum and is more efficacious in striatum (93% reduction in 4-HNE-positive and 84% reduction in 3-NT-positive neurons) than in cerebral cortex (42% reduction in 4-HNE-positive and 55% reduction in 3-NT-positive neurons). In addition, Pom attenuated microgliosis, astrogliosis, and elevations of proinflammatory cytokines in cortical and striatal tissue. We conclude that Pom may contribute to improved motor behavioral outcomes after TBI through targeting oxidative/nitrosative damages and neuroinflammation.


Assuntos
Lesões Encefálicas Traumáticas , Doenças Neuroinflamatórias , Talidomida/análogos & derivados , Ratos , Animais , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Estresse Oxidativo , Citocinas/metabolismo , Córtex Cerebral/metabolismo , Modelos Animais de Doenças
2.
J Cell Mol Med ; 28(4): e18139, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334198

RESUMO

Platelets assume a pivotal role in the cardiovascular diseases (CVDs). Thus, targeting platelet activation is imperative for mitigating CVDs. Ginkgetin (GK), from Ginkgo biloba L, renowned for its anticancer and neuroprotective properties, remains unexplored concerning its impact on platelet activation, particularly in humans. In this investigation, we delved into the intricate mechanisms through which GK influences human platelets. At low concentrations (0.5-1 µM), GK exhibited robust inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Intriguingly, thrombin and U46619 remained impervious to GK's influence. GK's modulatory effect extended to ATP release, P-selectin expression, intracellular calcium ([Ca2+ ]i) levels and thromboxane A2 formation. It significantly curtailed the activation of various signaling cascades, encompassing phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß and mitogen-activated protein kinases. GK's antiplatelet effect was not reversed by SQ22536 (an adenylate cyclase inhibitor) or ODQ (a guanylate cyclase inhibitor), and GK had no effect on the phosphorylation of vasodilator-stimulated phosphoproteinSer157 or Ser239 . Moreover, neither cyclic AMP nor cyclic GMP levels were significantly increased after GK treatment. In mouse studies, GK notably extended occlusion time in mesenteric vessels, while sparing bleeding time. In conclusion, GK's profound impact on platelet activation, achieved through inhibiting PLCγ2-PKC cascade, culminates in the suppression of downstream signaling and, ultimately, the inhibition of platelet aggregation. These findings underscore the promising therapeutic potential of GK in the CVDs.


Assuntos
Biflavonoides , Nucleotídeos Cíclicos , Fosfolipases , Humanos , Animais , Camundongos , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/farmacologia , Fosfolipase C gama/metabolismo , Ácido Araquidônico/farmacologia , Ácido Araquidônico/metabolismo , Fosfolipases/metabolismo , Fosfolipases/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Ativação Plaquetária , Plaquetas/metabolismo , Agregação Plaquetária , Proteína Quinase C/metabolismo , Fosforilação , Colágeno/metabolismo
3.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396774

RESUMO

Platelets assume a pivotal role in the pathogenesis of cardiovascular diseases (CVDs), emphasizing their significance in disease progression. Consequently, addressing CVDs necessitates a targeted approach focused on mitigating platelet activation. Eugenol, predominantly derived from clove oil, is recognized for its antibacterial, anticancer, and anti-inflammatory properties, rendering it a valuable medicinal agent. This investigation delves into the intricate mechanisms through which eugenol influences human platelets. At a low concentration of 2 µM, eugenol demonstrates inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Notably, thrombin and U46619 remain unaffected by eugenol. Its modulatory effects extend to ATP release, P-selectin expression, and intracellular calcium levels ([Ca2+]i). Eugenol significantly inhibits various signaling cascades, including phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß, mitogen-activated protein kinases, and cytosolic phospholipase A2 (cPLA2)/thromboxane A2 (TxA2) formation induced by collagen. Eugenol selectively inhibited cPLA2/TxA2 phosphorylation induced by AA, not affecting p38 MAPK. In ADP-treated mice, eugenol reduced occluded lung vessels by platelet thrombi without extending bleeding time. In conclusion, eugenol exerts a potent inhibitory effect on platelet activation, achieved through the inhibition of the PLCγ2-PKC and cPLA2-TxA2 cascade, consequently suppressing platelet aggregation. These findings underscore the potential therapeutic applications of eugenol in CVDs.


Assuntos
Eugenol , Embolia Pulmonar , Humanos , Camundongos , Animais , Eugenol/farmacologia , Eugenol/uso terapêutico , Eugenol/metabolismo , Fosfolipase C gama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Ativação Plaquetária , Agregação Plaquetária , Plaquetas/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Tromboxano A2/metabolismo , Colágeno/metabolismo , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/metabolismo , Fosfolipases A2 Citosólicas/metabolismo
4.
Transl Res ; 261: 57-68, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37419278

RESUMO

Stress-induced hyperglycemia (SIH) is associated with poor functional recovery and high mortality in patients with acute ischemic stroke (AIS). However, intensive controlling of blood glucose by using insulin was not beneficial in patients with AIS and acute hyperglycemia. This study investigated the therapeutic effects of the overexpression of glyoxalase I (GLO1), a detoxifying enzyme of glycotoxins, on acute hyperglycemia-aggravated ischemic brain injury.  In the present study, adeno-associated viral (AAV)-mediated GLO1 overexpression reduced infarct volume and edema level but did not improve neurofunctional recovery in the mice with middle cerebral artery occlusion (MCAO). AAV-GLO1 infection significantly enhanced neurofunctional recovery in the MCAO mice with acute hyperglycemia but not in the mice with normoglycemia. Methylglyoxal (MG)-modified proteins expression significantly increased in the ipsilateral cortex of the MCAO mice with acute hyperglycemia. AAV-GLO1 infection attenuated the induction of MG-modified proteins, ER stress formation, and caspase 3/7 activation in MG-treated Neuro-2A cells, and reductions in synaptic plasticity and microglial activation were mitigated in the injured cortex of the MCAO mice with acute hyperglycemia. Treatment with ketotifen, a potent GLO1 stimulator, after surgery, alleviated neurofunctional deficits and ischemic brain damage in the MCAO mice with acute hyperglycemia.  Altogether, our data substantiate that, in ischemic brain injury, GLO1 overexpression can alleviate pathologic alterations caused by acute hyperglycemia. Upregulation of GLO1 may be a therapeutic strategy for alleviating SIH-aggravated poor functional outcomes in patients with AIS.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Hiperglicemia , AVC Isquêmico , Lactoilglutationa Liase , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , AVC Isquêmico/complicações , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Glicemia , Infarto da Artéria Cerebral Média/complicações , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia
5.
Life Sci ; 318: 121477, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796718

RESUMO

Renocardiac syndromes are a critical concern among patients with chronic kidney disease (CKD). High level of indoxyl sulfate (IS), a protein-bound uremic toxin, in plasma is known to promote the pathogenesis of cardiovascular diseases by impairing endothelial function. However, the therapeutic effects of the adsorbent of indole, a precursor of IS, on renocardiac syndromes is still debated. Therefore, novel therapeutic approaches should be developed to treat IS-associated endothelial dysfunction. In the present study, we have found that cinchonidine, a major Cinchona alkaloid, exhibited superior cell-protective effects among the 131 test compounds in IS-stimulated human umbilical vein endothelial cells (HUVECs). IS-induced cell death, cellular senescence, and impairment of tube formation in HUVECs were substantially reversed after treatment with cinchonidine. Despite the cinchonidine did not alter reactive oxygen species formation, cellular uptake of IS and OAT3 activity, RNA-Seq analysis showed that the cinchonidine treatment downregulated p53-modulated gene expression and substantially reversed IS-caused G0/G1 cell cycle arrest. Although the mRNA levels of p53 were not considerably downregulated by cinchonidine in IS-treated HUVECs, the treatment of cinchonidine promoted the degradation of p53 and the cytoplasmic-nuclear shuttling of MDM2. Cinchonidine exhibited cell-protective effects against the IS-induced cell death, cellular senescence, and impairment of vasculogenic activity in HUVECs through the downregulation of p53 signaling pathway. Collectively, cinchonidine may be a potential cell-protective agent to rescue IS-induced endothelial cell damage.


Assuntos
Síndrome Cardiorrenal , Alcaloides de Cinchona , Humanos , Síndrome Cardiorrenal/metabolismo , Alcaloides de Cinchona/metabolismo , Alcaloides de Cinchona/farmacologia , Regulação para Baixo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Indicã/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
6.
ACS Chem Neurosci ; 14(4): 725-740, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36694924

RESUMO

Imbalance in brain glucose metabolism and epigenetic modulation during the disease course of insulin resistance (IR) associated with Parkinson's disease (PD) risk remains a prime concern. Fibroblast growth factor 21 (FGF21), the metabolic hormone, improves insulin sensitivity and elicits anti-diabetic properties. Chronic stress during brain IR may modulate the FGF21 expression and its dynamic release via epigenetic modifications. Metformin regulates and increases the expression of FGF21 which can be modulating in obesity, diabetes, and IR. Hence, this study was designed to investigate the FGF21 expression modulation via an epigenetic mechanism in PD and whether metformin (MF), an autophagy activator, and sodium butyrate (NaB), a pan histone deacetylase inhibitor, alone and in combination, exert any therapeutic benefit in PD pathology exacerbated by high-fat diet (HFD). Our results portray that the combination treatment with MF and NaB potentially attenuated the abnormal lipid profile and increased motor performance for the rats fed with HFD for 8 weeks followed by intrastriatal 6-hydroxy dopamine administration. The enzyme-linked immunosorbent assay (ELISA) estimations of C-reactive protein, tumor necrosis factor-α, interleukin-1 beta and 6, and FGF21 exhibited extensive downregulation after treatment with the combination. Lastly, mRNA, western blot, histological, and cresyl violet staining depicted that the combination treatment can restore degenerated neuronal density and increase the protein level compared to the disease group. The findings from the study effectively conclude that the epigenetic mechanism involved in FGF21 mediated functional abnormalities in IR-linked PD pathology. Hence, combined treatment with MF and NaB may prove to be a novel combination in ameliorating IR-associated PD in rats, probably via the upregulation of FGF21 expression.


Assuntos
Resistência à Insulina , Metformina , Doença de Parkinson , Animais , Ratos , Dieta Hiperlipídica , Epigênese Genética , Metformina/farmacologia , Doença de Parkinson/tratamento farmacológico
7.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887391

RESUMO

Yohimbine (YOH) has antiproliferative effects against breast cancer and pancreatic cancer; however, its effects on vascular proliferative diseases such as atherosclerosis remain unknown. Accordingly, we investigated the inhibitory mechanisms of YOH in vascular smooth muscle cells (VSMCs) stimulated by platelet-derived growth factor (PDGF)-BB, a major mitogenic factor in vascular diseases. YOH (5-20 µM) suppressed PDGF-BB-stimulated a mouse VSMC line (MOVAS-1 cell) proliferation without inducing cytotoxicity. YOH also exhibited antimigratory effects and downregulated matrix metalloproteinase-2 and -9 expression in PDGF-BB-stimulated MOVAS-1 cells. It also promoted cell cycle arrest in the initial gap/first gap phase by upregulating p27Kip1 and p53 expression and reducing cyclin-dependent kinase 2 and proliferating cell nuclear antigen expression. We noted phospholipase C-γ1 (PLCγ1) but not ERK1/2, AKT, or p38 kinase phosphorylation attenuation in YOH-modulated PDGF-BB-propagated signaling pathways in the MOVAS-1 cells. Furthermore, YOH still inhibited PDGF-BB-induced cell proliferation and PLCγ1 phosphorylation in MOVAS-1 cells with α2B-adrenergic receptor knockdown. YOH (5 and 10 mg/kg) substantially suppressed neointimal hyperplasia in mice subjected to CCA ligation for 21 days. Overall, our results reveal that YOH attenuates PDGF-BB-stimulated VSMC proliferation and migration by downregulating a α2B-adrenergic receptor-independent PLCγ1 pathway and reduces neointimal formation in vivo. Therefore, YOH has potential for repurposing for treating atherosclerosis and other vascular proliferative diseases.


Assuntos
Aterosclerose , Músculo Liso Vascular , Animais , Aterosclerose/metabolismo , Becaplermina/metabolismo , Becaplermina/farmacologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptores Adrenérgicos/metabolismo , Transdução de Sinais , Ioimbina/farmacologia
8.
Pharmaceutics ; 13(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34452143

RESUMO

The blood-brain barrier (BBB) plays a vital role in the protection and maintenance of homeostasis in the brain. In this way, it is an interesting target as an interface for various types of drug delivery, specifically in the context of the treatment of several neuropathological conditions where the therapeutic agents cannot cross the BBB. Drug toxicity and on-target specificity are among some of the limitations associated with current neurotherapeutics. In recent years, advances in nanodrug delivery have enabled the carrier system containing the active therapeutic drug to target the signaling pathways and pathophysiology that are closely linked to central nervous system (CNS) disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), brain tumor, epilepsy, ischemic stroke, and neurodegeneration. At present, among the nano formulations, solid lipid nanoparticles (SLNs) have emerged as a putative drug carrier system that can deliver the active therapeutics (drug-loaded SLNs) across the BBB at the target site of the brain, offering a novel approach with controlled drug delivery, longer circulation time, target specificity, and higher efficacy, and more importantly, reducing toxicity in a biomimetic way. This paper highlights the synthesis and application of SLNs as a novel nontoxic formulation strategy to carry CNS drugs across the BBB to improve the use of therapeutics agents in treating major neurological disorders in future clinics.

9.
J Agric Food Chem ; 69(16): 4697-4707, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33852294

RESUMO

Platelets play a crucial role in cardiovascular disorders (CVDs); thus, development of a therapeutic target that prevents platelet activation reduces CVDs. Pterostilbene (PTE) has several remarkable pharmacological activities, including anticancer and neuroprotection. Herein, we examined the inhibitory mechanisms of PTE in human platelets and its role in the prevention of vascular thrombosis in mice. At very low concentrations (1-5 µmol/L), PTE strongly inhibited collagen-induced platelet aggregation, but it did not have significant effects against thrombin and 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin (U46619). PTE markedly reduced P-selectin expression on isolated α-granules by a novel microchip. Moreover, PTE inhibited adenosine triphosphate (ATP) release, intracellular ([Ca2+]i) mobilization (resting, 216.6 ± 14.0 nmol/L; collagen-activated platelets, 396.5 ± 25.7 nmol/L; 2.5 µmol/L PTE, 259.4 ± 8.8 nmol/L; 5 µmol/L PTE, 231.8 ± 9.7 nmol/L), phospholipase C (PLC)γ2/protein kinase C (PKC), Akt, and mitogen-activated protein kinase (MAPK) phosphorylation. Neither 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536) nor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) reversed platelet aggregation inhibited by PTE. PTE did not affect vasodilator-stimulated phosphoprotein phosphorylation. In mice, PTE obviously reduced the mortality (from 100 to 37.5%) associated with acute pulmonary thromboembolism without increasing the bleeding time. Thus, PTE could be used to prevent CVDs.


Assuntos
Ativação Plaquetária , Trombose , Animais , Plaquetas , Humanos , Camundongos , Fosforilação , Agregação Plaquetária , Resveratrol , Estilbenos , Trombose/prevenção & controle
10.
Autophagy ; 17(12): 4141-4158, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33749503

RESUMO

Basal macroautophagy/autophagy has recently been found in anucleate platelets. Platelet autophagy is involved in platelet activation and thrombus formation. However, the mechanism underlying autophagy in anucleate platelets require further clarification. Our data revealed that LC3-II formation and SQSTM1/p62 degradation were noted in H2O2-activated human platelets, which could be blocked by 3-methyladenine and bafilomycin A1, indicating that platelet activation may cause platelet autophagy. AMPK phosphorylation and MTOR dephosphorylation were also detected, and block of AMPK activity by the AMPK inhibitor dorsomorphin reversed SQSTM1 degradation and LC3-II formation. Moreover, autophagosome formation was observed through transmission electron microscopy and deconvolution microscopy. These findings suggest that platelet autophagy was induced partly through the AMPK-MTOR pathway. In addition, increased LC3-II expression occurred only in H2O2-treated Atg5f/f platelets, but not in H2O2-treated atg5-/- platelets, suggesting that platelet autophagy occurs during platelet activation. atg5-/- platelets also exhibited a lower aggregation in response to agonists, and platelet-specific atg5-/- mice exhibited delayed thrombus formation in mesenteric microvessles and decreased mortality rate due to pulmonary thrombosis. Notably, metabolic analysis revealed that sphingolipid metabolism is involved in platelet activation, as evidenced by observed several altered metabolites, which could be reversed by dorsomorphin. Therefore, platelet autophagy and platelet activation are positively correlated, partly through the interconnected network of sphingolipid metabolism. In conclusion, this study for the first time demonstrated that AMPK-MTOR signaling could regulate platelet autophagy. A novel linkage between AMPK-MTOR and sphingolipid metabolism in anucleate platelet autophagy was also identified: platelet autophagy and platelet activation are positively correlated.Abbreviations: 3-MA: 3-methyladenine; A.C.D.: citric acid/sod. citrate/glucose; ADP: adenosine diphosphate; AKT: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ANOVA: analysis of variance; ATG: autophagy-related; B4GALT/LacCS: beta-1,4-galactosyltransferase; Baf-A1: bafilomycin A1; BECN1: beclin 1; BHT: butylate hydrooxytoluene; BSA: bovine serum albumin; DAG: diacylglycerol; ECL: enhanced chemiluminescence; EDTA: ethylenediamine tetraacetic acid; ELISA: enzyme-linked immunosorbent assay; GALC/GCDase: galactosylceramidase; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GBA/GluSDase: glucosylceramidase beta; GPI: glycosylphosphatidylinositol; H2O2: hydrogen peroxide; HMDB: human metabolome database; HRP: horseradish peroxidase; IF: immunofluorescence; IgG: immunoglobulin G; KEGG: Kyoto Encyclopedia of Genes and Genomes; LAMP1: lysosomal associated membrane protein 1; LC-MS/MS: liquid chromatography-tandem mass spectrometry; mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MPV: mean platelet volume; MTOR: mechanistic target of rapamycin kinase; ox-LDL: oxidized low-density lipoprotein; pAb: polyclonal antibody; PC: phosphatidylcholine; PCR: polymerase chain reaction; PI3K: phosphoinositide 3-kinase; PLS-DA: partial least-squares discriminant analysis; PRP: platelet-rich plasma; Q-TOF: quadrupole-time of flight; RBC: red blood cell; ROS: reactive oxygen species; RPS6KB/p70S6K: ribosomal protein S6 kinase B; SDS: sodium dodecyl sulfate; S.E.M.: standard error of the mean; SEM: scanning electron microscopy; SGMS: sphingomyelin synthase; SM: sphingomyelin; SMPD/SMase: sphingomyelin phosphodiesterase; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; UGT8/CGT: UDP glycosyltransferase 8; UGCG/GCS: UDP-glucose ceramide glucosyltransferase; ULK1: unc-51 like autophagy activating kinase 1; UPLC: ultra-performance liquid chromatography; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; WBC: white blood cell; WT: wild type.


Assuntos
Autofagia , Trombose , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia/fisiologia , Plaquetas/metabolismo , Cromatografia Líquida , Peróxido de Hidrogênio , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Esfingolipídeos , Serina-Treonina Quinases TOR/metabolismo , Espectrometria de Massas em Tandem
11.
Elife ; 92020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32589144

RESUMO

Traumatic brain injury (TBI) causes mortality and disability worldwide. It can initiate acute cell death followed by secondary injury induced by microglial activation, oxidative stress, inflammation and autophagy in brain tissue, resulting in cognitive and behavioral deficits. We evaluated a new pomalidomide (Pom) analog, 3,6'-dithioPom (DP), and Pom as immunomodulatory agents to mitigate TBI-induced cell death, neuroinflammation, astrogliosis and behavioral impairments in rats challenged with controlled cortical impact TBI. Both agents significantly reduced the injury contusion volume and degenerating neuron number evaluated histochemically and by MRI at 24 hr and 7 days, with a therapeutic window of 5 hr post-injury. TBI-induced upregulated markers of microglial activation, astrogliosis and the expression of pro-inflammatory cytokines, iNOS, COX-2, and autophagy-associated proteins were suppressed, leading to an amelioration of behavioral deficits with DP providing greater efficacy. Complementary animal and cellular studies demonstrated DP and Pom mediated reductions in markers of neuroinflammation and α-synuclein-induced toxicity.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Encefalite/tratamento farmacológico , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Talidomida/análogos & derivados , Animais , Citocinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
12.
Mar Drugs ; 17(6)2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31213027

RESUMO

Activated human monocytes/macrophages, which increase the levels of matrix metalloproteinases (MMPs) and pro-inflammatory cytokines, are the essential mechanisms for the progression of sepsis. In the present study, we determined the functions and mechanisms of hirsutanolA (HA), which is isolated from the red alga-derived marine fungus Chondrostereum sp. NTOU4196, on the production of pro-inflammatory mediators produced from lipopolysaccharide (LPS)-treated THP-1 cells. Our results showed that HA suppressed LPS-triggered MMP-9-mediated gelatinolysis and expression of protein and mRNA in a concentration-dependent manner without effects on TIMP-1 activity. Also, HA significantly attenuated the levels of TNF-α, IL-6, and IL-1ß from LPS-treated THP-1 cells. Moreover, HA significantly inhibited LPS-mediated STAT3 (Tyr705) phosphorylation, IκBα degradation and ERK1/2 activation in THP-1 cells. In an LPS-induced endotoxemia mouse model, studies indicated that HA pretreatment improved endotoxemia-induced acute sickness behavior, including acute motor deficits and anxiety-like behavior. HA also attenuated LPS-induced phospho-STAT3 and pro-MMP-9 activity in the hippocampus. Notably, HA reduced pathologic lung injury features, including interstitial tissue edema, infiltration of inflammatory cells and alveolar collapse. Likewise, HA suppressed the induction of phospho-STAT3 and pro-MMP-9 in lung tissues. In conclusion, our results provide pharmacological evidence that HA could be a useful agent for treating inflammatory diseases, including sepsis.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Citocinas/metabolismo , Comportamento de Doença/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Sesquiterpenos/farmacologia , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Animais , Linhagem Celular Tumoral , Endotoxemia/complicações , Endotoxemia/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Células THP-1/efeitos dos fármacos , Células THP-1/metabolismo
13.
Int J Mol Med ; 44(1): 357, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31059013

RESUMO

After the publication of the above paper, the authors noted that an incomplete version of the address was presented for the second author affiliation; essentially, 'School of Medicine' had been omitted from the address. Therefore, the author and affiliation details for this paper should have been presented as follows: Kou­Gi Shyu1,2, Marappan Velusamy3, Chih­Wei Hsia2, Chih­Hao Yang2, Chih­Hsuan Hsia2, Duen­Suey Chou2, Thanasekaran Jayakumar2, Joen­Rong Sheu2 And Jiun­Yi Li2,4. 1Division of Cardiology, Shin Kong Wu Ho­Su Memorial Hospital, Taipei 111; 2Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, R.O.C.; 3Department of Chemistry, North Eastern Hill University, Shillong, Meghalaya 793022, India; 4Department of Cardiovascular Surgery, Mackay Memorial Hospital, and Mackay Medical College, Taipei 104, Taiwan, R.O.C. The authors regret that the error with the second author affiliation was not noticed prior to the publication of their paper, and apologize for any inconvenience caused. [the original article was published in International Journal of Molecular Medicine 41: 2589­2600, 2018; DOI: 10.3892/ijmm.2018.3472].

14.
Int J Mol Sci ; 19(11)2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30463221

RESUMO

Platelets play a major role in hemostatic events and are associated with various pathological events, such as arterial thrombosis and atherosclerosis. Iridium (Ir) compounds are potential alternatives to platinum compounds, since they exert promising anticancer effects without cellular toxicity. Our recent studies found that Ir compounds show potent antiplatelet properties. In this study, we evaluated the in vitro antiplatelet, in vivo antithrombotic and structure⁻activity relationship (SAR) of newly synthesized Ir complexes, Ir-1, Ir-2 and Ir-4, in agonists-induced human platelets. Among the tested compounds, Ir-1 was active in inhibiting platelet aggregation induced by collagen; however, Ir-2 and Ir-4 had no effects even at their maximum concentrations of 50 µM against collagen and 500 µM against U46619-induced aggregation. Similarly, Ir-1 was potently inhibiting of adenosine triphosphate (ATP) release, calcium mobilization ([Ca2+]i) and P-selectin expression induced by collagen-induced without cytotoxicity. Likewise, Ir-1 expressively suppressed collagen-induced Akt, PKC, p38MAPKs and JNK phosphorylation. Interestingly, Ir-2 and Ir-4 had no effect on platelet function analyzer (PFA-100) collagen-adenosine diphosphate (C-ADP) and collagen-epinephrine (C-EPI) induced closure times in mice, but Ir-1 caused a significant increase when using C-ADP stimulation. Other in vivo studies revealed that Ir-1 significantly prolonged the platelet plug formation, increased tail bleeding times and reduced the mortality of adenosine diphosphate (ADP)-induced acute pulmonary thromboembolism in mice. Ir-1 has no substitution on its phenyl group, a water molecule (like cisplatin) can replace its chloride ion and, hence, the rate of hydrolysis might be tuned by the substituent on the ligand system. These features might have played a role for the observed effects of Ir-1. These results indicate that Ir-1 may be a lead compound to design new antiplatelet drugs for the treatment of thromboembolic diseases.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/uso terapêutico , Irídio/uso terapêutico , Trombose/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Adulto , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Cálcio/metabolismo , Adesão Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Colágeno/farmacologia , Complexos de Coordenação/farmacologia , Feminino , Hemorragia/patologia , Humanos , Proteínas Imobilizadas/farmacologia , Irídio/química , Irídio/farmacologia , Ligantes , Masculino , Camundongos Endogâmicos ICR , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/patologia , Relação Estrutura-Atividade , Trombose/patologia , Fatores de Tempo , Adulto Jovem
15.
Int J Mol Sci ; 19(4)2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29642394

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of mortality worldwide and leads to persistent cognitive, sensory, motor dysfunction, and emotional disorders. TBI-caused primary injury results in structural damage to brain tissues. Following the primary injury, secondary injuries which are accompanied by neuroinflammation, microglial activation, and additional cell death subsequently occur. Platonin, a cyanine photosensitizing dye, has been used to treat trauma, ulcers, and some types of acute inflammation. In the present study, the neuroprotective effects of platonin against TBI were explored in a controlled cortical impact (CCI) injury model in mice. Treatment with platonin (200 µg/kg) significantly reduced the neurological severity score, general locomotor activity, and anxiety-related behavior, and improved the rotarod performance of CCI-injured mice. In addition, platonin reduced lesion volumes, the expression of cleaved caspase-3, and microglial activation in TBI-insulted brains. Platonin also suppressed messenger (m)RNA levels of caspase-3, caspase-1, cyclooxygenase-2, tumor necrosis factor-α, interleukin-6, and interleukin-1ß. On the other hand, free radical production after TBI was obviously attenuated in platonin-treated mice. Treatment with platonin exhibited prominent neuroprotective properties against TBI in a CCI mouse model through its anti-inflammatory, anti-apoptotic, and anti-free radical capabilities. This evidence collectively indicates that platonin may be a potential therapeutic medicine for use with TBIs.


Assuntos
Anti-Inflamatórios/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Tiazóis/uso terapêutico , Animais , Caspases/genética , Caspases/metabolismo , Córtex Cerebral/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Força da Mão , Interleucinas/genética , Interleucinas/metabolismo , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Int J Mol Sci ; 19(4)2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565268

RESUMO

Hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana, has been reported to have anticancer effects against various cancer cell lines. However, the detailed molecular mechanisms and the inhibiting roles of hinokitiol on adenocarcinoma A549 cells remain to be fully elucidated. Thus, the current study was designed to evaluate the effect of hinokitiol on the migration of human lung adenocarcinoma A549 cells in vitro. The data demonstrates that hinokitiol does not effectively inhibit the viability of A549 cells at up to a 10 µM concentration. When treated with non-toxic doses (1-5 µM) of hinokitiol, the cell migration is markedly suppressed at 5 µM. Hinokitiol significantly reduced p53 expression, followed by attenuation of Bax in A549 cells. A dose-dependent inhibition of activated caspase-9 and -3 was observed in the presence of hinokitiol. An observed increase in protein expression of matrix metalloproteinases (MMPs) -2/-9 in A549 cells was significantly inhibited by hinokitiol. Remarkably, when A549 cells were subjected to hinokitiol (1-5 µM), there was an increase in the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in cells. In addition, the incubation of A549 cells with hinokitiol significantly activated the cytochrome c expression, which may be triggered by activation of caspase-9 followed by caspase-3. These observations indicate that hinokitiol inhibited the migration of lung cancer A549 cells through several mechanisms, including the activation of caspases-9 and -3, induction of p53/Bax and antioxidant CAT and SOD, and reduction of MMP-2 and -9 activities. It also induces cytochrome c expression. These findings demonstrate a new therapeutic potential for hinokitiol in lung cancer chemoprevention.


Assuntos
Metaloproteinases da Matriz/metabolismo , Monoterpenos/farmacologia , Tropolona/análogos & derivados , Células A549 , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Catalase/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocromos c/metabolismo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Superóxido Dismutase/metabolismo , Tropolona/farmacologia
17.
Int J Mol Med ; 41(5): 2589-2600, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29436605

RESUMO

Since cisplatin achieved clinical success, transition metal platinum (Pt) drugs have been effectively used for the treatment of cancer. Iridium (Ir) compounds are considered to be potential alternatives to Pt compounds, as they possess promising anticancer effects with minor side effects. Platelet activation is associated with the metastasis and progression of cancer, and also with arterial thrombosis. Therefore, it is necessary to develop novel, effective antithrombotic agents. An Ir (III)­derived complex, [Ir (Cp*) 1­(2­pyridyl)­3­(3­methoxyphenyl)imidazo[1,5­a]pyridine Cl]BF4 (Ir­3), was developed as a novel antiplatelet drug. Ir­3 exerted more potent inhibitory activity on platelet aggregation stimulated by collagen compared with other agonists, including thrombin. In collagen­activated platelets, Ir­3 also inhibited adenosine trisphosphate release, intracellular Ca+2 mobilization and surface P­selectin expression, as well as the phosphorylation of phospholipase Cγ2 (PLCγ2), protein kinase C (PKC), protein kinase B (Akt) and c­Jun N­terminal kinase (JNK) 1, but not p38 mitogen­activated protein kinase or extracellular signal­regulated kinases. Ir­3 did not markedly affect phorbol 12, 13­dibutyrate­stimulated platelet aggregation. Neither the adenylate cyclase inhibitor SQ22536 nor the guanylate cyclase inhibitor 1H­[1, 2, 4] oxadiazolo [4,3­a]quinoxalin­1­one significantly reversed the Ir­3­mediated inhibition of platelet aggregation. Furthermore, Ir­3 had no considerable diminishing effects on OH radical signals in collagen­stimulated platelets or Fenton reaction solution. In conclusion, Ir­3 serves a novel function in the inhibition of platelet aggregation through inhibiting the PLCγ2­PKC cascade, and the subsequent suppression of Akt and JNK1 activation. Therefore, Ir­3 may be a potential novel therapeutic agent for the treatment of thromboembolic disorders, or the interplay between platelets and tumor cells which contributes to tumor cell proliferation and progression.


Assuntos
Irídio/química , Irídio/farmacologia , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/farmacologia , Trifosfato de Adenosina/metabolismo , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Cálcio/metabolismo , Humanos , Selectina-P/metabolismo , Fosfolipase C gama/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
J Cell Mol Med ; 22(2): 999-1013, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29214724

RESUMO

CME-1, a novel water-soluble polysaccharide purified from Ophiocordyceps sinensis mycelia, has anti-oxidative, antithrombotic and antitumour properties. In this study, other major attributes of CME-1, namely anti-inflammatory and immunomodulatory properties, were investigated. Treating lipopolysaccharide (LPS)-stimulated RAW 264.7 cells with CME-1 concentration-dependently suppressed nitric oxide formation and inducible nitric oxide synthase (iNOS) expression. In the CME-1-treated RAW 264.7 cells, LPS-induced IκBα degradation and the phosphorylation of p65, Akt and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase, c-Jun N-terminal kinase and p38, were reduced. Treatment with a protein phosphatase 2A (PP2A)-specific inhibitor, significantly reversed the CME-1-suppressed iNOS expression; IκBα degradation; and p65, Akt and MAPK phosphorylation. PP2A activity up-regulation and PP2A demethylation reduction were also observed in the cells. Moreover, CME-1-induced PP2A activation and its subsequent suppression of LPS-activated RAW 264.7 cells were diminished by the inhibition of ceramide signals. LPS-induced reactive oxygen species (ROS) and hydroxyl radical formation were eliminated by treating RAW 264.7 cells with CME-1. Furthermore, the role of ceramide signalling pathway and anti-oxidative property were also demonstrated in CME-1-mediated inhibition of LPS-activated primary peritoneal macrophages. In conclusion, CME-1 suppressed iNOS expression by up-regulating ceramide-induced PP2A activation and reducing ROS production in LPS-stimulated macrophages. CME-1 is a potential therapeutic agent for treating inflammatory diseases.


Assuntos
Ceramidas/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Polissacarídeos/farmacologia , Proteína Fosfatase 2/metabolismo , Animais , Antioxidantes/farmacologia , Cordyceps/química , Ativação Enzimática/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/biossíntese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Sci Rep ; 7: 42277, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165057

RESUMO

Thrombosis and stroke are major causes of disability and death worldwide. However, the regular antithrombotic drugs may have unsatisfactory results and side effects. Platonin, a cyanine photosensitizing dye, has been used to treat trauma, ulcers and some acute inflammation. Here, we explored the neuroprotective effects of platonin against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in mice. Platonin(200 µg/kg) substantially reduced cerebral infarct volume, brain edema, neuronal cell death and neurological deficit scores, and improved the MCAO-reduced locomotor activity and rotarod performance. Platonin(5-10 µM) potently inhibited platelet aggregation and c-Jun NH2-terminal kinase (JNK) phosphorylation in collagen-activated platelets. The antiaggregation effect did not affect bleeding time but increased occlusion time in platonin(100 and 200 µg/kg)-treated mice. Platonin(2-10 µM) was potent in diminishing collagen- and Fenton reaction-induced ∙OH formation. Platonin(5-10 µM) also suppressed the expression of nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, interleukin-1ß, and JNK phosphorylation in lipopolysaccharide-stimulated macrophages. MCAO-induced expression of 3-nitrotyrosine and Iba1 was apparently attenuated in platonin(200 µg/kg)-treated mice. In conclusion, platonin exhibited remarkable neuroprotective properties against MCAO-induced ischemia in a mouse model through its antiaggregation, antiinflammatory and antiradical properties. The observed therapeutic efficacy of platonin may consider being a novel medcine against ischemic stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Neuroproteção , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Tiazóis/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Comportamento Animal , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Morte Celular/efeitos dos fármacos , Colágeno , Modelos Animais de Doenças , Radicais Livres/metabolismo , Humanos , Fatores Imunológicos/farmacologia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Mediadores da Inflamação/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fosforilação , Agregação Plaquetária/efeitos dos fármacos , Células RAW 264.7 , Acidente Vascular Cerebral/complicações , Tiazóis/química , Tiazóis/farmacologia , Fatores de Tempo
20.
Artigo em Inglês | MEDLINE | ID: mdl-26379739

RESUMO

Antrodia camphorata (A. camphorata) is a fungus generally used in Chinese folk medicine for treatment of viral hepatitis and cancer. Our previous study found A. camphorata has neuroprotective properties and could reduce stroke injury in cerebral ischemia animal models. In this study, we sought to investigate the molecular mechanisms of neuroprotective effects of A. camphorata in middle cerebral artery occlusion (MCAO) rats. A selective occlusion of the middle cerebral artery (MCA) with whole blood clots was used to induce ischemic stroke in rats and they were orally treated with A. camphorata (0.25 and 0.75 g/kg/day) alone or combined with aspirin (5 mg/kg/day). To provide insight into the functions of A. camphorata mediated neuroprotection, the expression of Bax, inducible nitric oxide synthase (iNOS), haem oxygenase-1 (HO-1), and activated caspase-3 was determined by Western blot assay. Treatment of aspirin alone significantly reduced the expressions of HO-1 (P < 0.001), iNOS (P < 0.001), and Bax (P < 0.01) in ischemic regions. The reduction of these expressions was more potentiated when rats treated by aspirin combined with A. camphorata (0.75 g/kg/day). Combination treatment also reduced apoptosis as measured by a significant reduction in active caspase-3 expression in the ischemic brain compared to MCAO group (P < 0.01). Moreover, treatment of A. camphorata significantly (P < 0.05) reduced fenton reaction-induced hydroxyl radical (OH(•)) formation at a dose of 40 mg/mL. Taken together, A. camphorata has shown neuroprotective effects in embolic rats, and the molecular mechanisms may correlate with the downregulation of Bax, iNOS, HO-1, and activated caspase-3 and the inhibition of OH(•) signals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA