Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nanomaterials (Basel) ; 13(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37947667

RESUMO

Nuclear fission reactions can release massive amounts of energy accompanied by neutrons and γ photons, which create a mixed radiation field and enable a series of reactions in nuclear reactors. This study demonstrates a one-pot/one-step approach to synthesizing radioactive gold nanoparticles (RGNP) without using radioactive precursors and reducing agents. Trivalent gold ions are reduced into gold nanoparticles (8.6-146 nm), and a particular portion of 197Au atoms is simultaneously converted to 198Au atoms, rendering the nanoparticles radioactive. We suggest that harnessing nuclear energy to gold nanoparticles is feasible in the interests of advancing nanotechnology for cancer therapy. A combination of RGNP applied through convection-enhanced delivery (CED) and temozolomide (TMZ) through oral administration demonstrates the synergistic effect in treating glioblastoma-bearing mice. The mean survival for RGNP/TMZ treatment was 68.9 ± 9.7 days compared to that for standalone RGNP (38.4 ± 2.2 days) or TMZ (42.8 ± 2.5 days) therapies. Based on the verification of bioluminescence images, positron emission tomography, and immunohistochemistry inspection, the combination treatment can inhibit the proliferation of glioblastoma, highlighting the niche of concurrent chemoradiotherapy (CCRT) attributed to RGNP and TMZ.

2.
Front Cell Neurosci ; 15: 713336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744630

RESUMO

Glioma, the most common subtype of primary brain tumor, is an aggressive and highly invasive neurologically tumor among human cancers. Interleukin-33 (IL-33) is considered as a dual functional cytokine, an alarmin upon tissue damage and a nuclear chromatin-associated protein. Despite that, IL-33 is known to foster the formation of the inflammatory tumor microenvironment and facilitate glioma progression, evidence showing nuclear IL-33 function is still poor. In this study using lentivirus-mediated IL-33 gene knockdown (IL33KD) and IL-33 overexpression (IL33oe) in rat C6 glioma cells and human glioma cell lines (U251MG and U87MG), we found that IL33oe-glioma cells had resistance to the insults of the alkylating agent, temozolomide (TMZ), possibly because of the increased expression of DNA repair genes (i.e., BRCA1, BRCA2, Rad51, FANCB, and FANCD) in IL33oe-glioma cells. Alternatively, examination of glioma nuclear shape from transmission electron microscopy (TEM) imaging analysis and immunofluorescence for histone protein H2A staining showed that IL33KD attenuated the abnormal cancerous nuclear characteristic, such as indentation, long clefts, and multiple nucleoids. Yet, IL33oe promoted the changes in glioma nuclear shapes, such as the formation of multiple lobes. We further found that histone proteins, H2A and H3, were reduced in IL33KD glioma cells. The non-histone DNA-binding nucleoproteins, the high mobility group A1 (HMGA1) and HMGA2, were also downregulated by IL33KD. In contrast, IL33oe increased H2A and H3 proteins and HMGA1 and HMGA2 in glioma cells. Altogether, the upregulation of nuclear IL-33 expression was along with an increase in the expression of DNA repair genes, contributing to the desensitization of glioma cells to DNA damaging agents. Moreover, nuclear IL-33 proteins in cooperation with chromatin-associated proteins regulate glioma nuclear structure, which might be crucial for glioma progression and malignancy.

3.
Medicina (Kaunas) ; 56(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33227992

RESUMO

Background and objectives: Cancer stem cells (CSCs) are obstacles to cancer therapy due to their therapeutic resistance, ability to initiate neoplasia, and roles in tumor relapse and metastasis. Efforts have been made to cure CSCs, such as the use of differentiation therapy, which induces cancer stem-like cells to undergo differentiation and decrease their tumorigenicity. Interleukin 6 (IL-6) upregulates the expression of glial fibrillary acidic protein (GFAP) in C6 glioma cells, indicating that it is able to induce the differentiation of these cells. The C6 glioma cell line forms a high percentage of cancer stem-like cells, leading us to speculate whether IL-6 signaling could modulate the differentiation of tumorigenic C6 glioma cells. However, we observed that IL-6 alone could not efficiently induce the differentiation of these cells. Therefore, different IL-6 signaling elicitors, including IL-6 alone, a combination of IL-6 and soluble IL-6 receptor (IL-6/sIL-6R), and tumor necrosis factor-α (TNF-α) plus IL-6/sIL-6R (TNF-α/IL-6/sIL-6R), were evaluated for their potential use in differentiation therapy. Materials and Methods: The potential of IL-6 signaling elicitors in differentiation therapy were examined by assessing changes in biomarker levels, the rate of cell proliferation, and tumorigenicity, respectively. Results: Enhanced IL-6 signaling could effectively induce C6 glioma cell differentiation, as determined by observed variations in the expression of differentiation, cell cycle, and stem cell biomarkers. Additionally, the total cell population and the tumorigenicity of glioma cells were all considerably reduced after TNF-α/IL-6/sIL-6R treatment. Conclusions: Our findings provide evidence that enhanced IL-6 signaling can efficiently promote tumorigenic C6 glioma cells to undergo differentiation.


Assuntos
Glioma , Interleucina-6 , Diferenciação Celular , Humanos , Recidiva Local de Neoplasia , Fator de Necrose Tumoral alfa
4.
Brain Res ; 1719: 124-132, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31153914

RESUMO

Increasing evidence has supported that transplantation of human stem cells induces neuroprotective and reparative effects in animal models of Parkinson's disease (PD). However, without systemic immunosuppressive therapy, most of these grafted cells are rejected by the hosts. Long term and systemic injection of cyclosporine-A (CsA) is required to maintain the survival of grafted cells. The purpose this study is to examine a new treatment strategy to suppress the immunorejection by locally co-grafting of polylactic/glycolic acid nanoparticles containing CsA (NanoCsA) with differentiated human induced pluripotent stem cells (iPSCs). In the in vitro media, NanoCsA provided sustained release of CsA for >6 weeks. The differentiated human iPSCs were co-grafted with NanoCsA or NanoVeh (nanoparticle without CsA) to the striatum of unilaterally 6-hydroxydopamine -lesioned rats. NanoCsA/iPSCs co-graft significantly improved locomotor activity compared to NanoVeh/iPSCs co-grafts or iPSC grafts + sytemic CsA at 1 month after transplantation. Brain tissues were collected for measurements of tyrosine hydroxylase (TH) and human marker Stem121 immunoreactivity. Cografting with NanoCsA/iPSCs, compared to NanoVeh/iPSCs, significantly increased TH and Stem121 immunoreactivity as well as tumor formation in the lesioned striatum. Taken together, our study supports that NanoCsA provides long-lasting CsA release and reduces immunorejection of human iPSCs xenograft in a 6-hydroxydopamine rat model of PD.


Assuntos
Ciclosporina/farmacologia , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Ciclosporina/administração & dosagem , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Masculino , Nanopartículas/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxidopamina/farmacologia , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Transplante Heterólogo/métodos
5.
Front Mol Neurosci ; 11: 4, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29416501

RESUMO

B-cell CLL/lymphoma 11B (Bcl11b) - a C2H2 zinc finger transcriptional factor - is known to regulate neuronal differentiation and function in the development of the central nervous system (CNS). Although its expression is reduced during oligodendrocyte (OLG) differentiation, its biological role in OLGs remains unknown. In this study, we found that the downregulation of Bcl11b gene expression in glial progenitor cells (GPCs) by lentivirus-mediated gene knockdown (KD) causes a reduction in cell proliferation with inhibited expression of stemness-related genes, while increasing the expression of cell cyclin regulator p21. In contrast, OLG specific transcription factors (Olig1) and OLG cell markers, including myelin proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG), were upregulated in Bcl11b-KD GPCs. Chromatin immunoprecipitation (ChIP) analysis indicated that Bcl11b bound to the promoters of Olig1 and PLP, suggesting that Bcl11b could act as a repressor for Olig1 and PLP, similar to its action on p21. An increase in the number of GC+- or PLP+- OLGs derived from Bcl11b-KD GPCs or OLG precursor cells was also observed. Moreover, myelin basic protein (MBP) expression in OLGs derived from Bcl11b-KD GPCs was enhanced in hippocampal neuron co-cultures and in cerebellar brain-slice cultures. The in vivo study using a lysolecithin-induced demyelinating animal model also indicated that larger amounts of MBP+-OLGs and PLP+-OLGs derived from implanted Bcl11b-KD GPCs were present at the lesioned site of the white matter than in the scramble group. Taken together, our results provide insight into the functional role of Bcl11b in the negative regulation of GPC differentiation through the repression of OLG differentiation-associated genes.

6.
J Neurosci Res ; 94(12): 1460-1471, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27629530

RESUMO

CD200, a type I transmembrane glycoprotein, can interact with its receptor CD200R, which plays an inhibitory role in the activation of microglia-the resident macrophages of the central nervous system. In this study, the rat C6 glioma cell line (C6-1) that was previously characterized with high in vivo tumorigenicity was found to generate CD200 mRNA abundantly. However, CD200 expression was barely detected in another C6 glioma cell clone (C6-2) that was previously found to display low tumorigenic behavior. The results from CD200 immunohistochemistry on human glioma tissue array also showed that tumor cells in Grade I-II astrocytoma expressed a lower level of CD200 immunoreactivity than those detected in Grade III-IV glioblastoma multiforme. C6-1 transfectants with stable downregulation of CD200 gene expression using lentivirus knockdown approach were generated (C6-KD). Microglia and iNOS+ cells were increased when microglia were co-cultured with C6-KD cells. The colony formation of C6-KD was also augmented when those cells were co-cultured with microglia. Yet, increased colony formation of C6-KD transfectants in the co-culture with microglia was effectively suppressed by interleukin (IL)-4 and IL-10. The in vivo results indicated that the tumor formation of C6-1 cells in rat brain was promoted after CD200 gene knockdown. Moreover, CD11b+ activated microglia and iNOS+ microglia were highly accumulated in the tumor site formed by C6-KD. In conclusion, our findings demonstrate that the downregulation of CD200 expression in CD200-rich glioma cells could foster the formation of an activated microglia-associated tumor microenvironment, leading to glioma progression. © 2016 Wiley Periodicals, Inc.


Assuntos
Antígenos CD/biossíntese , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Ativação de Macrófagos , Microglia , Animais , Antígenos CD/genética , Astrocitoma/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glioblastoma/metabolismo , Glioma/patologia , Humanos , Imuno-Histoquímica , Interleucina-10/farmacologia , Interleucina-4/farmacologia , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley
7.
Mol Neurobiol ; 53(6): 3528-3539, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26096706

RESUMO

B cell CLL/lymphoma 11B (Bcl11b), a C2H2 zinc finger transcription factor, not only serves as a critical regulator in development but also plays the controversial role in T cell acute lymphoblastic leukemia (T-ALL). We previously found that the enriched expression of Bcl11b was detected in high tumorigenic C6 glioma cells. However, the role of Bcl11b in glioma malignancy and its mechanisms remains to be uncovered. In this study, using the lentivirus-mediated knockdown (KD) approach, we found that Bcl11b KD in tumorigenic C6 cells reduced the cell proliferation, colony formation, and migratory ability. The results were further verified using two human malignant glioma cell lines, U87 and U251 cells. A cyclin-dependent kinase inhibitor p21, a known Bcl11b target, was significantly upregulated in tumorigenic C6, U87, and U251 cells after Bcl11b KD. Cellular senescence was observed by examination of the ß-galactosidase activity in U87 and U251 cells with Bcl11b KD. Reduced expression of stemness gene Sox-2 and its downstream effector Bmi-1 was also observed in U87 and U251 cells with Bcl11b KD. These results suggest that the ablation of Bcl11b gene expression induced glioma cell senescence. Propidium iodide (PI) staining combined with flow cytometry analysis also showed that Bcl11b KD led to the cell cycle arrest of U87 and U251 cells at the G0/G1 or at the S phase, indicating that Bcl11b is required for glioma cell cycle progression. Together, this is the first study to show that the inhibition of Bcl11b suppresses glioma cell growth by regulating the expression of the cell cycle regulator p21 and stemness-associated genes (Sox-2/Bmi-1).


Assuntos
Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Animais , Neoplasias Encefálicas/genética , Carcinogênese/genética , Carcinogênese/patologia , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo/genética , Técnicas de Silenciamento de Genes , Humanos , Complexo Repressor Polycomb 1/metabolismo , Ratos , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima/genética
8.
J Pathol ; 237(1): 50-61, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25925728

RESUMO

Ghrelin is an appetite-regulating molecule that promotes growth hormone (GH) release and food intake through growth hormone secretagogue receptor (GHS-R). Recently, high ghrelin levels have been detected in various types of human cancer. Ghrelin expression is observed in proximal and distal renal tubules, where renal cell carcinoma (RCC) arises. However, whether ghrelin is up-regulated and promotes renal cell carcinogenesis remains obscure. In this study, we observed that ghrelin was highly expressed in renal tumours, especially in metastatic RCC. In addition, high ghrelin levels correlated with poor outcome, lymph node and distant metastasis. The addition of ghrelin promoted the migration ability of RCC cell lines 786-0, ACHN and A-498. Furthermore, knockdown of ghrelin expression reduced in vitro migration and in vivo metastasis, suggesting a requirement for ghrelin accumulation in the microenvironment for RCC metastasis. Analysis of microarray signatures using Ingenuity Pathway Analysis (IPA) and MetaCore pointed to the potential regulation by ghrelin of Snail, a transcriptional repressor of E-cadherin. We further observed that Ghrelin increased the expression, nuclear translocation and promoter-binding activity of Snail. Snail silencing blocked the ghrelin-mediated effects on E-cadherin repression and cell migration. Snail-E-cadherin regulation was mediated by GHS-R-triggered Akt phosphorylation at Ser473 and Thr308. Pretreatment with PI3K inhibitors, LY294002 and wortmannin, as well as Akt siRNA, decreased ghrelin-induced Akt phosphorylation, Snail promoter binding activity and migration. Taken together, our findings indicate that ghrelin can activate Snail function via the GHS-R-PI3K-Akt axis, which may contribute to RCC metastasis. The microarray raw data were retrieved from the Cancer Genome Atlas (TCGA) [KIRC gene expression (IlluminaHiSeq) dataset].


Assuntos
Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/secundário , Movimento Celular , Grelina/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Fatores de Transcrição/metabolismo , Animais , Antígenos CD , Sítios de Ligação , Caderinas/genética , Caderinas/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Grelina/genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/mortalidade , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Regiões Promotoras Genéticas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail , Fatores de Tempo , Fatores de Transcrição/genética , Transfecção
9.
Oncotarget ; 5(21): 10901-15, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25337721

RESUMO

We previously found that BRCA1-BRCA2-containing complex subunit 3 (BRCC3) was highly expressed in tumorigenic rat glioma cells. However, the functional role of BRCC3 in human glioma cells remains to be characterized. This study indicated that the upregulation of BRCC3 expression was induced in two human malignant glioblastoma U251 and A172 cell lines following exposure to the alkylating agent, temozolomide (TMZ). Homologous recombination (HR)-dependent DNA repair-associated genes (i.e. BRCA1, BRCA2, RAD51 and FANCD2) were also increased in U251 and A172 cells after treatment with TMZ. BRCC3 gene knockdown through lentivirus-mediated gene knockdown approach not only significantly reduced the clonogenic and migratory abilities of U251 and A172 cells, but also enhanced their sensitization to TMZ. The increase in phosphorylated H2AX foci (γH2AX) formation, an indicator of DNA damage, persisted in TMZ-treated glioma cells with stable knockdown BRCC3 expression, suggesting that BRCC3 gene deficiency is associated with DNA repair impairment. In summary, we demonstrate that by inducing DNA repair, BRCC3 renders glioma cells resistant to TMZ. The findings point to BRCC3 as a potential target for treatment of alkylating drug-resistant glioma.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/tratamento farmacológico , Proteínas de Membrana/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Dacarbazina/farmacologia , Enzimas Desubiquitinantes , Regulação para Baixo , Imunofluorescência , Glioma/metabolismo , Glioma/patologia , Humanos , Técnicas Imunoenzimáticas , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Gradação de Tumores , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Temozolomida , Células Tumorais Cultivadas
10.
J Cell Sci ; 127(Pt 8): 1792-804, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24522183

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a human progeroid disease caused by a point mutation on the LMNA gene. We reported previously that the accumulation of the nuclear envelope protein SUN1 contributes to HGPS nuclear aberrancies. However, the mechanism by which interactions between mutant lamin A (also known as progerin or LAΔ50) and SUN1 produce HGPS cellular phenotypes requires further elucidation. Using light and electron microscopy, this study demonstrated that SUN1 contributes to progerin-elicited structural changes in the nuclear envelope and the endoplasmic reticulum (ER) network. We further identified two domains through which full-length lamin A associates with SUN1, and determined that the farnesylated cysteine within the CaaX motif of lamin A has a stronger affinity for SUN1 than does the lamin A region containing amino acids 607 to 656. Farnesylation of progerin enhanced its interaction with SUN1 and reduced SUN1 mobility, thereby promoting the aberrant recruitment of progerin to the ER membrane during postmitotic assembly of the nuclear envelope, resulting in the accumulation of SUN1 over consecutive cellular divisions. These results indicate that the dysregulated interaction of SUN1 and progerin in the ER during nuclear envelope reformation determines the progression of HGPS.


Assuntos
Retículo Endoplasmático/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Progéria/patologia , Retículo Endoplasmático/patologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Lamina Tipo A/genética , Mitose , Membrana Nuclear/patologia , Mutação Puntual , Prenilação , Progéria/genética , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Pele/patologia
11.
J Virol ; 88(9): 4962-75, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24554665

RESUMO

UNLABELLED: Epstein-Barr virus (EBV) lytic replication involves complex processes, including DNA synthesis, DNA cleavage and packaging, and virion egress. These processes require many different lytic gene products, but the mechanisms of their actions remain unclear, especially for DNA cleavage and packaging. According to sequence homology analysis, EBV BALF3, encoded by the third leftward open reading frame of the BamHI-A fragment in the viral genome, is a homologue of herpes simplex virus type 1 UL28. This gene product is believed to possess the properties of a terminase, such as nucleolytic activity on newly synthesized viral DNA and translocation of unit length viral genomes into procapsids. In order to characterize EBV BALF3, the protein was produced by and purified from recombinant baculoviruses and examined in an enzymatic reaction in vitro, which determined that EBV BALF3 acts as an endonuclease and its activity is modulated by Mg(2+), Mn(2+), and ATP. Moreover, in EBV-positive epithelial cells, BALF3 was expressed and transported from the cytoplasm into the nucleus following induction of the lytic cycle, and gene silencing of BALF3 caused a reduction of DNA packaging and virion release. Interestingly, suppression of BALF3 expression also decreased the efficiency of DNA synthesis. On the basis of these results, we suggest that EBV BALF3 is involved simultaneously in DNA synthesis and packaging and is required for the production of mature virions. IMPORTANCE: Virus lytic replication is essential to produce infectious virions, which is responsible for virus survival and spread. This work shows that an uncharacterized gene product of the human herpesvirus Epstein-Barr virus (EBV), BALF3, is expressed during the lytic cycle. In addition, BALF3 mediates an endonucleolytic reaction and is involved in viral DNA synthesis and packaging, leading to influence on the production of mature virions. According to sequence homology and physical properties, the lytic gene product BALF3 is considered a terminase in EBV. These findings identify a novel viral gene with an important role in contributing to a better understanding of the EBV life cycle.


Assuntos
Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Herpesvirus Humano 4/enzimologia , Herpesvirus Humano 4/fisiologia , Proteínas Virais/metabolismo , Montagem de Vírus , Replicação Viral , Cátions Bivalentes/metabolismo , Ativadores de Enzimas/metabolismo , Magnésio/metabolismo , Manganês/metabolismo
12.
Neuro Oncol ; 16(4): 552-66, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24327583

RESUMO

BACKGROUND: Glioma development is a multistep process associated with progressive genetic alterations but also regulated by cellular and noncellular components in a tumor-associated niche. METHODS: Using 2 rat C6 glioma cell clones with different tumorigenesis, named C6-1 and C6-2, this study characterized genes associated with enhanced tumorigenic features of glioma cells by comparative cDNA microarray analysis combined with Q-PCR. Neurospehere formation and clonogenicity were examined to determine the growth of tumorigenic C6 glioma cells. The lentivirus-mediated gene knockdown approach was conducted to determine the role of interleukin-33 (IL-33) in glioma cell proliferation and migration. Transwell cell invasion assay was used to examine microglia migration induced by tumorigenic C6 cells. RESULTS: The functional analysis of gene ontology (GO) biological processes shows that the upregulated genes found in tumorigenic C6 (C6-1) cells are closely related to cell proliferation. Tumorigenic C6 cells expressed cytokines and chemokines abundantly. Among these genes, IL-33 was profoundly induced in tumorigenic C6 cells with the expression of IL-33 receptor ST2. Furthermore, the growth rate and colony formation of tumorigenic C6 cells were attenuated by the inhibition of IL-33 and ST2 gene expression. Moreover, IL-33 was involved in tumorigenic glioma cell migration and regulation of the expression of several glioma-associated growth factors and chemokines in tumorigenic C6 cells. CONCLUSION: Accordingly, we concluded that glioma cells with abundant production of IL-33 grow rapidly; moreover, the interactions of multiple cytokines/chemokines induced by glioma cells may develop a microenvironment that facilitates microglia/macrophage infiltration and fosters glioma growth in the brain.


Assuntos
Movimento Celular , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Interleucinas/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Western Blotting , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Feminino , Glioma/genética , Técnicas Imunoenzimáticas , Interleucina-33 , Interleucinas/antagonistas & inibidores , Interleucinas/genética , Lentivirus/genética , Camundongos , Microglia/patologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
13.
Glia ; 61(9): 1402-17, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23832679

RESUMO

CD133 (Prominin-1/AC133) is generally treated as a cell surface marker found on multipotent stem cells and tumor stem-like cells, and its biological function remains debated. Genetically modified rat glioma cell lines were generated by lentiviral gene delivery of human CD133 into rat C6 glioma cells (hCD133(+) -C6) or by infection of C6 cells with control lentivirus (mock-C6). Stable hCD133 expression promoted the self-renewal ability of C6-formed spheres with an increase in the expression of the stemness markers, Bmi-1 and SOX2. Akt phosphorylation, Notch-1 activation, and Notch-1 target gene expression (Hes-1, Hey1 and Hey2) were increased in hCD133(+) -C6 when compared to mock-C6. The inhibition of Akt phosphorylation, Notch-1 activation, and Hes-1 in hCD133(+) -C6 cells effectively suppressed their clonogenic ability, indicating that these factors are involved in expanding the growth of hCD133(+) -C6. An elevated expression of GTPase-activating protein 27 (Arhgap27) was detected in hCD133(+) -C6. A decline in the invasion of hCD133(+) -C6 by knockdown of Arhgap27 expression indicated the critical role of Arhgap27 in promoting cell migration of hCD133(+) -C6. In vivo study further showed that hCD133(+) -C6 formed aggressive tumors in vivo compared to mock-C6. Exposure of hCD133(+) -C6 to arsenic trioxide not only reduced Akt phosphorylation, Notch-1 activation and Hes-1 expression in vitro, but also inhibited their tumorigenicity in vivo. The results show that C6 glioma cells with stable hCD133 expression enhanced their stemness properties with increased Notch-1/Hes-1 signaling, Akt activation, and Arhgap27 action, which contribute to increased cell proliferation and migration of hCD133(+) -C6 in vitro, as well as progressive tumor formation in vivo.


Assuntos
Antígenos CD/metabolismo , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Glioma/metabolismo , Glicoproteínas/metabolismo , Peptídeos/metabolismo , Antígeno AC133 , Animais , Antígenos CD/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Trióxido de Arsênio , Arsenicais/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Córtex Cerebral/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Feminino , Formazans , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Glioma/tratamento farmacológico , Glioma/patologia , Glicoproteínas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Lentivirus/genética , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Óxidos/farmacologia , Peptídeos/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Notch1/genética , Receptor Notch1/metabolismo , Sais de Tetrazólio , Fatores de Tempo , Fatores de Transcrição HES-1 , Transfecção
14.
Macromol Biosci ; 13(10): 1314-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23861238

RESUMO

Gold nanoparticles (AuNPs) have been established to sufficiently eradicate tumors by means of heat production for photothermal therapy. However, the translation of the AuNPs from bench to the clinic still remains to be solved until realizing high bioclearance after treatment. Herein, we developed a simple strategy for simultaneous formation and assembly of small-size gold nanoparticles (Au-SNPs) to form a novel nanocomposite in the presence of gum arabic (GA) by synchrotron X-ray irradiation in an aqueous solution within 5 min. GA, a porous polysaccharide, can not only provide a confined space in which to produce uniform Au-SNPs (1.6 ± 0.7 nm in diameter), but can also facilitate the formation of Au-SNPs@GA (diameter ≈ 40 nm) after irradiating synchrotron X-rays. Specifically, the Au-SNPs@GA possesses high thermal stability and a strong photothermal effect for killing cancer cells. Importantly, a bioclearance study demonstrated that the Au-SNPs@GA can be gradually excreted by the renal and hepatobiliary system, which might be due to the breakdown and oxidation of GA under irradiating synchrotron X-rays. Thus, the novel gold nanocomposite can be promising photothermal agents for cancer treatment at the therapeutic level, minimizing toxicity concerns regarding long-term accumulation in vivo.


Assuntos
Ouro/administração & dosagem , Goma Arábica/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Fototerapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Ouro/química , Goma Arábica/química , Humanos , Nanopartículas Metálicas/química , Raios X
15.
Chem Res Toxicol ; 26(5): 662-73, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23617821

RESUMO

Quantum dots (QDs) are one of most utilized nanomaterials in nanocrystalline semiconductors. QDs emit near-infrared fluorescence and can be applied as probes for detecting vasculature and imaging in biological systems. Since QDs have potential in clinical application, the toxicity of QDs needs to be carefully evaluated. In our present study, we elucidate the cytotoxic mechanisms of QDs using a mouse renal adenocarcinoma (RAG) cell line. QDs in RAG cells increased intracellular reactive oxygen species (ROS) levels and induced autophagy at 6 h, leading to subsequent apoptosis at 24 h. QDs entered the cells and were located within the endoplasmic reticulum (ER), endosome, and lysosome at 6 h and endosome, lysosome, and mitochondria at 24 h. However, QDs only affected mitochondrial function and did not induce ER stress. N-Acetylcysteine, an antioxidant agent, reduced intracellular ROS levels and decreased QD-induced autophagy but enhanced QD-induced cell death. Moreover, 3-methylamphetamine (an autophagy inhibitor) also reduced the cell viability in QD-treated cells. These findings suggest that ROS plays an essential role in the regulation of QD-induced autophagy, which subsequently enhances cell survival. Taken together, these results suggest that oxidative stress-induced autophagy is a defense/survival mechanism against the cytotoxicity of QD.


Assuntos
Antineoplásicos/toxicidade , Autofagia/efeitos dos fármacos , Cádmio/toxicidade , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pontos Quânticos , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
16.
Toxicology ; 308: 1-9, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23499856

RESUMO

Quantum dots (QDs) are nano-sized semiconductors. Previously, intratracheal instillation of QD705s induces persistent inflammation in mouse lungs. In our present study, QD705-COOH and QD705-PEG activated NF-κB and increased monocyte chemotactic protein-1 (MCP-1) expression in macrophages RAW264.7 via MyD88 dependent Toll-like receptor (TLR) signaling pathways. MyD88 is an adapter protein for most TLRs to activate NF-κB. Silencing expression of MyD88 or p65 with siRNA or co-treatment with a NF-κB inhibitor tremendously abolished QD705s-induced NF-κB activity and MCP-1 expression. The involved TLRs might locate either on the cell surface or inside of cells. Co-treatment with a TLR4 inhibitor completely prevented MCP-1 induction by QD705-PEG. Nevertheless, QD705-COOH readily entered cells, and co-treatment with either inhibitors of endocytosis or intracellular TLRs prevented MCP-1 induction. These findings indicate that, depending on their surface modification, OD705s activate MyD88 dependent-TLRs at the surface or inside of the cells, which is an important mechanism for nanoparticles-induced inflammatory responses. But other MyD88-independent pathways may also involve in these responses.


Assuntos
Quimiocina CCL2/biossíntese , Compostos Cromogênicos/farmacologia , Macrófagos/metabolismo , Fator 88 de Diferenciação Mieloide/fisiologia , Pontos Quânticos , Receptores Toll-Like/fisiologia , Animais , Linhagem Celular , Quimiocina CCL2/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Fator 88 de Diferenciação Mieloide/biossíntese , Tamanho da Partícula , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
17.
J Neurosci Res ; 91(5): 694-705, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23404572

RESUMO

Peripheral injection with a high dose of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, into animals with mild or moderate spinal cord injury (SCI) for 1 week can reduce spinal cord tissue loss and promote hindlimb locomotor recovery. A purinergic adenosine triphosphate (ATP) receptor subtype, P2X4 receptor (P2X4 R), has been considered as a potential target to diminish SCI-associated inflammatory responses. In this study, using a minipump-based infusion system, we found that intraspinal infusion with VPA for 3 days into injured spinal cord significantly improved hindlimb locomotion of rats with severe SCI induced by a 10-g NYU impactor dropping from the height of 50 mm onto the spinal T9/10 segment. The neuronal fibers in the injured spinal cord tissues were significantly preserved in VPA-treated rats compared with those observed in vehicle-treated animals. Moreover, the accumulation of microglia/macrophages and astrocytes in the injured spinal cord was attenuated in the animal group receiving VPA infusion. VPA also significantly reduced P2X4 R expression post-SCI. Furthermore, in vitro study indicated that VPA, but not the other HDAC inhibitors, sodium butyrate and trichostatin A (TSA), caused downregulation of P2X4 R in microglia activated with lipopolysaccharide (LPS). Moreover, p38 mitogen-activated protein kinase (MAPK)-triggered signaling was involved in the effect of VPA on the inhibition of P2X4 R gene expression. In addition to the findings from others, our results also provide important evidence to show the inhibitory effect of VPA on P2X4 R expression in activated microglia, which may contribute to reduction of SCI-induced gliosis and subsequently preservation of spinal cord tissues. © 2013 Wiley Periodicals, Inc.


Assuntos
Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Microglia/efeitos dos fármacos , Receptores Purinérgicos P2X4/metabolismo , Traumatismos da Medula Espinal/patologia , Ácido Valproico/farmacologia , Animais , Catalase/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Membro Posterior/fisiopatologia , Locomoção/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Fibras Nervosas/metabolismo , Proteínas de Neurofilamentos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X4/genética , Traumatismos da Medula Espinal/tratamento farmacológico , Superóxido Dismutase/metabolismo , Ácido Valproico/uso terapêutico
18.
Exp Toxicol Pathol ; 65(6): 887-96, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23352990

RESUMO

Zinc oxide nanoparticles (ZnONP) have great potential for medical applications. However, ZnONP is reported to induce acute lung inflammation, which limits its application in humans. We designed in vivo and in vitro studies to clarify ZnONP inflammation and its associated molecular signals. ZnONP with a single dose of 80 µg/30 µl was instilled into the tracheas of mice sacrificed at days 2, 7, 14, and 28 after instillation. Bronchoalveolar lavage fluid showed increased neutrophils and macrophages after treatment. Lung pathology showed a mixed inflammatory infiltrate of neutrophils, lymphocytes, and macrophages primarily in the bronchioles and peribronchiolar areas. Proinflammatory gene expression of TNF-α, IL-6, CXCL1, and MCP-1 was increased at day 2 and decreased after 7 days. The lung pathology resolved at day 28, without fibrosis. It remains unclear whether this acute lung inflammation was caused by ZnONP themselves or Zn(2+) iron released from the nanoparticles. In vitro studies confirming the results of in vivo studies showed increased expression of proinflammatory genes in both MLE12 cells (mouse lung epithelial cells) and RAW264.7 cells (mouse macrophages) with either ZnONP or Zn(NO3)2 treatment; notably, increased levels of proinflammatory genes were obviously higher in cells treated with ZnONP than in cells treated with Zn(NO3)2 at the same molarity dose. TNF-α and MCP-1 were induced only in MLE12 cells. MyD88, an adaptor protein for most Toll-like receptors (TLR) signaling pathways, initiated the ZnONP or Zn(NO3)2-induced lung inflammation. Silencing MyD88 expression with siRNA significantly reduced ZnONP or Zn(NO3)2-induced proinflammatory gene expression in MLE12 and RAW264.7 cells. Single-dose exposure to ZnONP produced the short-term lung inflammation via a MyD88-dependent TLR pathway. These data suggest that although both ZnONP and zinc ion might participate in the inflammatory reactions, ZnONP more effectively induced MyD88-dependent proinflammatory cytokines than zinc ion in lung epithelial cells.


Assuntos
Fator 88 de Diferenciação Mieloide/metabolismo , Nanopartículas/toxicidade , Pneumonia/induzido quimicamente , Óxido de Zinco/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/imunologia , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fator 88 de Diferenciação Mieloide/genética , Tamanho da Partícula , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , RNA Interferente Pequeno/genética , Testes de Função Respiratória
19.
Nanotoxicology ; 7(1): 105-15, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22107365

RESUMO

Some quantum dots (QDs) have been applied for drug delivery and imaging in biological systems. Drug delivery via the lung and lung imaging are potential applications of QDs. QD705 is cadmium based. The aims of the study were to evaluate the biological effects of QD705 in the lungs and the protective effects of polyethylene glycol (PEG) coating against QD705-induced biological responses. Intratracheal instillation of QD705-COOH persistently induced acute neutrophil infiltration, followed by interstitial lymphocyte infiltration and a granulomatous reaction on days 17 and 90. QD705-COOH also induced gene expression of cytokines, chemokines and metalloproteinase 12 in lung tissues. Furthermore, QD705-COOH transiently reduced pulmonary function on day 17. Treatment with QD705-PEG induced similar inflammatory responses and reduced pulmonary function on day 17, but the granulomatous reaction disappeared by day 90 These data indicated that administration of QD705 via the lung caused adverse responses and PEG coating failed to prevent these effects.


Assuntos
Cádmio/química , Granuloma/patologia , Nanopartículas , Pneumonia/patologia , Pontos Quânticos , Animais , Linhagem Celular , Camundongos , Camundongos Endogâmicos ICR
20.
Nanoscale ; 5(1): 416-21, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23187860

RESUMO

Various nanocarriers for photosensitizers have been developed to solve the problems of limiting the clinical utility of photodynamic therapy (PDT); however, to date, no carriers capable of supplying oxygen have been reported. We reported the development of a novel system composed of red blood cell (RBC)-derived vesicles (RDVs) generated by osmotic stress and demonstrated the capacity of RDVs for encapsulating and delivering external cargo into targeted cells due to the cellular uptake of RDVs. In this study, protoporphyrin IX (PpIX)-encapsulated RDVs (PpIX@RDVs) were prepared by the hypotonic incorporation of PpIX into RDVs in an aqueous environment, characterized, and utilized for PDT of cancer. PpIX@RDVs were rapidly uptaken by tumor cells via endocytosis in vitro, and the highly phototoxic effect of PpIX@RDVs was demonstrated upon irradiation. Superoxide anion (O(2)˙) and singlet oxygen ((1)O(2)) were involved in PpIX@RDV-induced cell apoptosis and necrosis. Finally, we demonstrated that RDVs with an oxygen supply capacity have potential as versatile delivery vehicles for efficient PDT.


Assuntos
Eritrócitos/química , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Neoplasias Experimentais/tratamento farmacológico , Fotoquimioterapia/métodos , Protoporfirinas/administração & dosagem , Protoporfirinas/química , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA