Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 11: 514494, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33574763

RESUMO

Percutaneous coronary intervention (PCI) is the most widely used therapy for treating ischemic heart disease. However, intimal hyperplasia and restenosis usually occur within months after angioplasty. Modern pharmacological researchers have proven that osthole, the major active coumarin of Cnidium monnieri (L.) Cusson, exerts potent antiproliferative effects in lung cancer cells, the human laryngeal cancer cell line RK33 and TE671 medulloblastoma cells, and its mechanism of action is related to cell cycle arrest. The goal of the present study was to observe the effect of osthole on vascular smooth muscle cell (VSMC) proliferation using platelet-derived growth factor-BB (PDGF-BB)-stimulated VSMCs isolated from rats and vascular balloon injury as models to further elucidate the molecular mechanisms underlying this activity. We detected the relative number of VSMCs by the MTT assay and EdU staining and examined cell cycle progression by flow cytometry. To more deeply probe the mechanisms, the protein expression levels of PCNA, the cyclin D1/CDK4 complex and the cyclin E1/CDK2 complex in balloon-treated rat carotid arteries and the mRNA and protein expression levels of the cyclin D1/CDK4 and cyclin E1/CDK2 complexes in VSMCs were detected by real-time RT-PCR and western blotting. The data showed that osthole significantly inhibited the proliferation of VSMCs induced by PDGF-BB. Furthermore, osthole caused apparent VSMC cycle arrest early in G0/G1 phase and decreased the expression of cyclin D1/CDK4 and cyclin E1/CDK2. Our results demonstrate that osthole can significantly inhibit PDGF-BB-induced VSMC proliferation and that its regulatory effects on cell cycle progression and proliferation may be related to the downregulation of cyclin D1/CDK4 and cyclin E1/CDK2 expression as well as the prevention of cell cycle progression from G0/G1 phase to S phase. The abovementioned mechanism may be responsible for the alleviation of neointimal hyperplasia in balloon-induced arterial wall injury by osthole.

2.
Biomed Pharmacother ; 121: 109640, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31810114

RESUMO

Pulmonary artery smooth muscle cell (PASMC) proliferation contributes to pulmonary vascular remodeling, which ultimately leads to pulmonary arterial hypertension (PAH). Osthole has been previously shown to inhibit tumor cell growth. Our previous experiments demonstrated that osthole could prevent monocrotaline-induced PAH and pulmonary artery remodeling in rats and that its effects might be associated with inhibiting PASMC proliferation. However, the exact mechanism remains unclear. In this study, we observed the inhibitory effect of osthole on platelet-derived growth factor (PDGF)-BB-induced rat PASMC growth, cell cycle progression and proliferating cell nuclear antigen (PCNA) expression, as measured by CCK-8 assay, flow cytometric analysis and western blotting, respectively. We also detected the expression and activities of the cell cycle regulators cyclin D1/CDK4, cyclin E1/CDK2, p53, p27 and p21 and the TGF-ß1/Smad/p38 signaling pathways in rat PASMCs by western blotting. Our results show that osthole effectively suppressed PDGF-BB-stimulated proliferation, PCNA protein expression, and cell cycle progression in rat PASMCs in vitro. We further demonstrated that treatment with osthole significantly induced cell cycle arrest at the G0/G1 phase in PASMCs, which was supported by the finding that osthole significantly decreased cyclin D1/CDK4 and cyclin E1/CDK2 protein levels and increased p53, p27 and p21 protein levels. These effects may partly be attributed to the downregulation of TGF-ß1/Smad/p38 signaling pathway activation. Our findings suggest that osthole is a potential therapeutic candidate that warrants further investigation regarding its potential use for the treatment of PAH.


Assuntos
Cumarínicos/farmacologia , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/citologia , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Becaplermina/farmacologia , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
3.
Biomed Pharmacother ; 106: 1091-1097, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30119175

RESUMO

Ginsenoside Re (GS-Re) is one of the main ingredients of ginseng, a widely known Chinese traditional medicine, and has a variety of beneficial effects, including vasorelaxation, antioxidative, anti-inflammatory, and anticancer properties. The aims of the present study were to observe the effect of GS-Re on balloon injury-induced neointimal hyperplasia in the arteries and to investigate the mechanisms underlying this effect. A rat vascular neointimal hyperplasia model was generated by rubbing the endothelium of the common carotid artery (CCA) with a balloon, and GS-Re (12.5, 25 or 50 mg/kg/d) were subsequently continuously administered to the rats by gavage for 14 days. After GS-Re treatment, the vessel lumen of injured vessels showed significant increases in the GS-Re 25.0 and 50.0 mg/kg/d (intermediate- and high-dose) groups according to H.E. staining. Additionally, a reduced percentage of proliferating cell nuclear antigen (PCNA)-positive cells and an increased number of SM α-actin-positive cells were detected, and the levels of NO, cyclic guanosine monophosphate (cGMP), and eNOS mRNA as well as the phos-eNOSser1177/eNOS protein ratio were obviously upregulated in the intermediate- and high-dose groups. Moreover, the promotive effects of GS-Re on NO and eNOS expression were blocked by L-NAME treatment to different degrees. These results suggested that GS-Re can suppress balloon injury-induced vascular neointimal hyperplasia by inhibiting VSMC proliferation, which is closely related to the activation of the eNOS/NO/cGMP pathway.


Assuntos
Angioplastia com Balão/instrumentação , Lesões das Artérias Carótidas/prevenção & controle , Artéria Carótida Primitiva/efeitos dos fármacos , GMP Cíclico/metabolismo , Ginsenosídeos/farmacologia , Neointima , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Actinas/metabolismo , Animais , Lesões das Artérias Carótidas/enzimologia , Lesões das Artérias Carótidas/etiologia , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/enzimologia , Artéria Carótida Primitiva/patologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hiperplasia , Masculino , Óxido Nítrico Sintase Tipo III/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos Sprague-Dawley , Sistemas do Segundo Mensageiro/efeitos dos fármacos
4.
Biomed Pharmacother ; 100: 64-71, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29421583

RESUMO

Studies have demonstrated that icariin plays important roles in preventing hypertension and improving myocardial hypertrophy, inflammatory and infiltration. Icariside (ICS II) is the main metabolite of icariin, which has anti-inflammatory and anti-oxidant activities and protects against ischaemic brain injury. Whether ICS II improves myocardial fibrosis in spontaneously hypertensive rats (SHRs) and the related mechanism remain unknown. Some studies have suggested that TGF-ß and the nuclear factor κB signalling pathway play a key role in the progression of myocardial fibrosis. Therefore, in the current study, we aimed to evaluate the effects of ICS II on induced myocardial fibrosis in SHRs and explore the mechanism underlying this activity. The SHRs were treated with ICS II (4, 8, and 16 mg/kg) via daily gavage for 12 weeks. Left ventricular function was detected using the Vevo2100 system, and the collagen area was measured by Masson staining. The results indicated that ICS II markedly improved left ventricular function and decreased the left ventricular myocardial collagen area compared with the SHR group. To further investigate the mechanism underlying this activity, we measured the protein expression of interleukin-1ß (IL-1ß), tumour necrosis factor-α (TNF-α), transforming growth factor-ß1 (TGF-ß1), Smad2, inhibitory κB (IκB), and nuclear factor κB (NF-κB) p65 by Western blot. The results showed that ICS II inhibited NF-κB p65 expression and the TGF-ß1/Smad2 signalling pathways. In conclusion, the present results suggest that ICS II suppresses myocardial fibrosis in SHRs, and this effect might be at least partially mediated through suppression of NF-kB signalling and the TGF-ß1/Smad2 signalling pathway.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Flavonoides/uso terapêutico , Hipertensão/tratamento farmacológico , Miocárdio/patologia , NF-kappa B/antagonistas & inibidores , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Fibrose , Flavonoides/administração & dosagem , Hipertensão/imunologia , Masculino , Ratos Endogâmicos SHR , Transdução de Sinais
5.
Eur J Pharmacol ; 811: 232-239, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28648404

RESUMO

Osthole (7-methoxy-8-isopentenoxy-coumarin), a compound extracted from Cnidiummonnieri (L.) Cusson seeds, has been found to exhibit potent therapeutic effects in cancer due to its ability to inhibit inflammation and cell proliferation. However, its effects on arterial wall hypertrophy-related diseases remain unclear. Therefore, in this study, we aimed to investigate the effects of Osthole on intimal hyperplasia in a rat model of carotid artery balloon injury. We established the balloon-induced carotid artery injury rat model in male Sprague-Dawley rats, after which we administered Osthole (20mg/kg/day or 40mg/kg/day) or volume-matched normal saline orally by gavage for 14 consecutive days. Intimal hyperplasia and the degree of vascular smooth muscle cell proliferation were then evaluated by histopathological examination of the changes in the carotid artery, as well as by examination of proliferating cell nuclear antigen (PCNA) expression. Tumour necrosis factor-ɑ (TNF-α), interleukin-1ß (IL-1ß), transforming growth factor-beta (TGF-ß1) and PCNA mRNA expression levels were examined by real-time RT-PCR, while nuclear factor-κB (NF-κB (p65)), IκB-α, TGF-ß1 and phospho-Smad2 (p-Smad2) protein expression levels were analysed by immunohistochemistry or western blot analysis. We found that Osthole significantly attenuated neointimal thickness and decreased the elevations in PCNA protein expression induced by balloon injury. Moreover, Osthole down-regulated the pro-inflammatory factors TNF-α and IL-1ß and NF-κB (p65), whose expression had been upregulated after balloon injury. Moreover, IκB-α protein expression levels increased following Osthole treatment. In addition, the elevations in TGF-ß1 and p-Smad2 protein expression induced by balloon injury were both significantly attenuated by Osthole administration. We concluded that Osthole significantly inhibited neointimal hyperplasia in balloon-induced rat carotid artery injury and that the mechanism by which this occurs may involve NF-κB, IL-1ß and TNF-ɑ down-regulation, which alleviates the inflammatory response, and TGF-ß1/Smad2 signalling pathway inhibition.


Assuntos
Lesões das Artérias Carótidas/patologia , Cumarínicos/farmacologia , Hiperplasia/tratamento farmacológico , NF-kappa B/metabolismo , Neointima/patologia , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Lesões das Artérias Carótidas/complicações , Artéria Carótida Primitiva/efeitos dos fármacos , Artéria Carótida Primitiva/patologia , Cumarínicos/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperplasia/complicações , Hiperplasia/patologia , Masculino , Neointima/complicações , Antígeno Nuclear de Célula em Proliferação/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
6.
Eur J Pharmacol ; 685(1-3): 126-32, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22546228

RESUMO

This study aims to investigate the effects of ginsenoside Rb(1) on vascular intimal hyperplasia in rats and explore the mechanisms. The rat vascular neointimal hyperplasia model was made by rubbing the endothelia of carotid artery with a balloon and Rb(1) (10 and 30 mg/kg/day) was given the day after surgery for 14 consecutive days. The neointimal hyperplasia level and the degree of vascular smooth muscle cells (VSMCs) proliferation were evaluated by histopathology and by calculating the proliferating cell nuclear antigen (PCNA) positive expression percentage; protein expressions of PCNA, phosphorylation extracellular signal-regulated kinase 1/2 (pERK1/2), smooth muscle α-actin (SM α-actin), and the mRNA expressions of proto-oncogene c-myc, SM α-actin, SM-emb (embryonic smooth muscle myosin heavy chain) and p38 MAPK were detected by immunohistochemistry and Real Time RT-PCR, respectively. Compared with the endothelia rubbing model group, Rb(1) 10 and 30 mg/kg/day medication significantly ameliorated the neointimal hyperplasia (P<0.05), and decreased the positive expression percentage of PCNA(P<0.05). Rb(1) medication also significantly decreased the elevated protein expression of pERK1/2 and the mRNA expression of c-myc(P<0.05), and tended to reduce the expression of p38 MAPK mRNA. Endothelial rubbing increased the SM-emb mRNA expression, but decreased the expression of SM α-actin mRNA which was reversed by Rb(1) (P<0.05). The results indicate that Rb(1) inhibits the vascular neointimal hyperplasia induced by balloon-injury in rats via suppressing the VSMC proliferation, which may be involved in part the inhibition of pERK1/2 protein and related to its inhibition on VSMC phenotype modulation.


Assuntos
Doenças das Artérias Carótidas/tratamento farmacológico , Ginsenosídeos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/efeitos dos fármacos , Animais , Doenças das Artérias Carótidas/patologia , Cateterismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Ginsenosídeos/administração & dosagem , Hiperplasia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Neointima/patologia , Fenótipo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Artigo em Inglês | MEDLINE | ID: mdl-22474498

RESUMO

Ginsenoside Rg1 (Rg1) has been reported to suppress the proliferation of vascular smooth muscle cells (VSMCs). This study aimed to observe the role of nitric oxide (NO) in Rg1-antiproliferative effect. VSMCs from the thoracic aorta of SD rats were cultured by tissue explant method, and the effect of Rg1 (20 mg·L(-1), 60 mg·L(-1), and 180 mg·L(-1)) on platelet-derived growth factor-BB (PDGF-BB)-induced proliferation was evaluated by MTT assay. The cell cycle was analyzed by flow cytometry. For probing the mechanisms, the content of NO in supernatant and cGMP level in VSMCs was measured by nitric oxide kit and cGMP radio-immunity kit, respectively; the expressions of protooncogene c-fos and endothelial NO synthase (eNOS) mRNA in the VSMCs were detected by real-time RT-PCR; the intracellular free calcium concentration ([Ca2(+)](i)) was detected with Fura-2/AM-loaded VSMCs. Comparing with that in normal group, Rg1 180 mg·L(-1) did not change the absorbance of MTT and cell percent of G(0)/G(1), G(2)/M, and S phase in normal cells (P > 0.05). Contrarily, PDGF-BB could increase the absorbance of MTT (P < 0.01) and the percent of the S phase cells but decrease the G(0)/G(1) phase cell percent in the cell cycle, accompanied with an upregulating c-fos mRNA expression (P < 0.01), which was reversed by additions of Rg1(20 mg·L(-1), 60 mg·L(-1), and 180 mg·L(-1)). Rg1 administration could also significantly increase the NO content in supernatant and the cGMP level in VSMCs, as well as the eNOS mRNA expression in the cells, in comparison of that in the group treated with PDGF-BB alone (P < 0.01). Furthermore, Rg1 caused a further increase in the elevated [Ca(2+)](i) induced by PDGF-BB. It was concluded that Rg1 could inhibit the VSMC proliferation induced by PDGF-BB through restricting the G(0)/G(1) phase to S-phase progression in cell cycle. The mechanisms may be related to the upregulation of eNOS mRNA and the increase of the formation of NO and cGMP.

8.
J Ethnopharmacol ; 138(2): 472-8, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21964194

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ginsenoside Rg1 (Rg1) is one of the main active components of Panax ginseng a well-known herbal medicine. It has been demonstrated to inhibit proliferation of vascular smooth muscle cells (VSMCs) induced by tumor necrosis factor-αin vitro. The present study is aimed to examine the possible effects of Rg1 on vascular neointimal hyperplasia in balloon-injured carotid artery of rats in vivo. MATERIALS AND METHODS: The animal model was established by rubbing the endothelia with a balloon catheter in the common carotid artery (CCA) of male Sprague Dawley rats. Then the rats were intraperitoneally injected with distilled water in model group and sham operation control, or with Rg1 4, 8 and 16mg/kg/d in other balloon injured groups. After consecutive 14 days, the vascular intimal hyperplasia was evidenced by histopathological alterations of the CCA and by changes observed in the marker of the proliferation of VSMCs-the proliferating cell nuclear antigen (PCNA). The protein expressions of PCNA and the phosphorylated extracellular signal-regulated kinase2 (p-ERK2) as well as mitogen-ativated protein kinase phosphatase-1 (MKP-1) were examined by immunohistochemistry; while the expressions of proto-oncogene (c-fos), ERK2 and smooth muscle α-actin (SM α-actin) mRNA were analyzed by Real-Time RT-PCR. RESULTS: Rg1 administration could significantly ameliorate the histopathology of CCA and decrease the protein expression of PCNA induced by endothelia rubbing; and Rg1 medication also significantly decreased the expressions of p-ERK2 protein, ERK2 and c-fos mRNA in vessel wall, but up-regulated the MKP-1 expression, which was reported to inactivate mitogen-ativated protein kinase pathway. Furthermore, Rg1 could elevate the decreased SM α-actin mRNA expression induced by balloon injury. CONCLUSIONS: Rg1 can suppress the vascular neointimal hyperplasia induced by balloon injury, the mechanism may be involved in the inhibition on ERK2 signaling, and related, at least partly, to the increase in MKP-1 expression.


Assuntos
Artérias Carótidas/efeitos dos fármacos , Regulação para Baixo , Ginsenosídeos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Túnica Íntima/efeitos dos fármacos , Animais , Sequência de Bases , Artérias Carótidas/enzimologia , Artérias Carótidas/patologia , Primers do DNA , Hiperplasia , Imuno-Histoquímica , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Túnica Íntima/patologia
9.
Vascul Pharmacol ; 54(1-2): 52-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21187161

RESUMO

Ginsenosides, the active components found in Panax ginseng, have been reported to inhibit the cardiac hypertrophy in rats. This study aims to observe the potential effect of total ginsenosides (TG) on the hypertrophic vascular diseases. The model of vascular neointimal hyperplasia was established by rubbing the endothelia of the common carotid artery with a balloon in male Sprague Dawley rats. TG (15 mg/kg/day, 45 mg/kg/day), L-arginine (L-arg) 200 mg/kg/day, and NG-nitro-L-arginine-methyl ester (L-NAME) 100 mg/kg/day used with the same dose of L-arg or TG 45 mg/kg/day were given for 7 and 14 consecutive days after surgery. TG and L-arg administrations significantly ameliorated the histopathology of injured carotid artery, which was abolished or blunted by L-NAME, an NOS inhibitor; TG and L-arg could also remarkably reduce the expression of proliferating cell nuclear antigen (PCNA), a proliferation marker of vascular smooth muscle cells(VSMCs), in neointima of the injured artery wall. Further study indicated that balloon injury caused a decreased superoxide dismutase (SOD) activity and an elevated malondialdehyde (MDA) content in plasma, and reduced the cGMP level in the artery wall, which were reversed by TG. It was concluded that TG suppress the rat carotid artery neointimal hyperplasia induced by balloon injury, which may be involved in its anti-oxidative action and enhancing the inhibition effects of NO/cGMP on VSMC proliferation.


Assuntos
Cardiotônicos/farmacologia , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/tratamento farmacológico , Ginsenosídeos/farmacologia , Panax , Túnica Íntima/patologia , Angioplastia com Balão , Animais , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , GMP Cíclico/análise , Hiperplasia , Masculino , Malondialdeído/análise , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Antígeno Nuclear de Célula em Proliferação/análise , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Túnica Íntima/efeitos dos fármacos , Túnica Íntima/metabolismo
10.
Clin Exp Pharmacol Physiol ; 37(2): 150-5, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19566840

RESUMO

1. Resveratrol (RSV), a polyphenol in red wine, exhibits cardioprotective effects in vitro, such as inhibition of angiotensin II- or phenylephrine-induced cardiomyocyte hypertrophy in rat neonatal myocyte cultures and suppression of cardiac fibroblast proliferation. The aim of the present study was to investigate the protective effects of RSV against monocrotaline (MCT)-induced right ventricular (RV) hypertrophy in rats. 2. Male Sprague-Dawley rats were given a single injection of MCT (50 mg/kg, s.c.) and were then treated with either vehicle (normal saline) or RSV (10 and 30 mg/kg, i.g., twice daily) for 21 days. A separate group of control rats were not injected with MCT and were treated with normal saline for 21 days. At the end of the treatment period, all rats were subjected to echocardiography and haemodynamic measurements. In addition, after rats had been killed, the hearts were subjected to histopathological, untrastructural and immunohistochemical analyses. 3. In vehicle-treated rats, MCT injection resulted in 33% mortality, whereas mortality in RSV-treated MCT-injected rats was 0%. In vehicle-treated rats, MCT increased RV free wall thickness and RV systolic pressure and decreased pulmonary arterial acceleration time at the end of the experimental period. These dynamic changes were ameliorated by RSV in a dose-dependent manner. Histologically, MCT injection resulted in RV hypertrophy, swollen mitochrondria and cardiomyocyte apoptosis; all these morphological changes were dose-dependently improved in rats treated with RSV. 4. In conclusion, RSV inhibits the RV hypertrophy induced by MCT in rats and this effect is mediated by both a direct effect of RSV on cardiomyocytes and an indirect effect mediated via a reduction in pulmonary hypertension.


Assuntos
Cardiotônicos/administração & dosagem , Hipertrofia Ventricular Direita/prevenção & controle , Estilbenos/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Coração/anatomia & histologia , Coração/fisiopatologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/fisiopatologia , Masculino , Monocrotalina/farmacologia , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley , Resveratrol
11.
Biol Pharm Bull ; 32(3): 376-81, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19252281

RESUMO

This study was to investigate the probable inhibitory effect of Galphaq-protein carboxyl terminus imitation polypeptide-27 (GCIP-27), the optimized form of GCIP, which is a competition candidate of the activated binding sites on Galphaq, on the right ventricular (RV) hypertrophy induced by monocrotaline (MCT) in rats. We have previously shown that GCIP-27, can prevent the hypertrophyc responses in cultured rat cardiomyocytes induced by noradrenaline and angiotensin II. Male Sprague-Dawley rats were given a single dose (50 mg/kg) of MCT subcutaneouly to induce pulmonary hypertension (PH) and RV hypertrophy. GCIP-27 (30, 90 microg/kg) or vehicle was administered (twice daily, intraperitoneally) from day 1 to day 21. GCIP-27 (90 microg/kg) inhibited the elevated pulmonary arteria systolic pressure (PASP) and mean pulmonary arteria pressure induced by MCT, but its dose at 30 microg/kg only reduced the elevated PASP. And no effect could be seen on the pulmonary arteria diastolic pressure at both two doses. On the other hand, the two doses of GCIP-27 improved significantly the weight ratio of RV to left ventricle plus septum, the RV free wall thickness and pulmonary arteria acceleration time (PAAT). In morphometric observation, GCIP-27 (30, 90g/kg) could attenuate cardiomyocytes hypertrophy, interstitium fibrosis, mitochondria swelling and malformation markedly in RVs of MCT-treated rats. Furthermore, GCIP-27 (30, 90 mug/kg) significantly reduced the overexpression of the proliferating cell nuclear antigen (PCNA) induced by MCT in RV cardiocytes. The results suggest that GCIP-27 can effectively attenuate the RV hypertrophy induced by MCT in rats, which may be mediated by both the direct effect on cardiomyocyte and the secondary effect by reducing PH, and may be involved in its influence on the Gq signal pathway.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Hipertrofia Ventricular Direita/tratamento farmacológico , Monocrotalina , Fragmentos de Peptídeos/uso terapêutico , Animais , Hemodinâmica , Hipertrofia Ventricular Direita/mortalidade , Hipertrofia Ventricular Direita/patologia , Masculino , Células Musculares/ultraestrutura , Miocárdio/ultraestrutura , Fragmentos de Peptídeos/química , Antígeno Nuclear de Célula em Proliferação/biossíntese , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA